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‣ Language modeling aims at predicting the 
probability of the next token 𝑤! based on the 
prefix 𝑝(𝑤!|𝑤"𝑤#⋯𝑤!$"): 

‣ Architecture

- Transformer has become the backbone 
architecture of language model.

Language Model
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‣ Increasing training tokens and parameters leads to lower training loss 
(higher-level intelligence).

Scaling-up Language Model

Hoffmann et al., Training Compute-Optimal Large Language Models, NeurIPS'2022.
Huang et al., Compression Represents Intelligence Linearly, COLM'2024.

Correlation between average benchmark scores and models' loss
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‣ The scaled-up language models acquire a wide spectrum of capabilities.

Towards General Artificial Intelligence

Wei et al., Emergent Abilities of Large Language Models, TMLR'2022.
Chen et al., MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks, arXiv'2024.
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‣ Scaling up language model makes data imbalance issues severe.

- relatively easy to collect English corpus

- hard to collect non-English corpus

Unbalanced Data Distribution

Touvron et al., LLaMA2: Open Foundation and Fine-Tuned Chat Models, arXiv'2023.
Kudugunta et al., MADLAD-400: A Multilingual And Document-Level Large Audited Dataset, NeurIPS'2023.

LLaMA2 MADLAD-400
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‣ Scaling up language model makes data imbalance issues severe.

- hard to collect non-English corpus

- hard to filter non-English pages (②)

- hard to identify page languages (③)

- hard to filter non-English sentences (④)

Unbalanced Data Distribution

heavily rely on native speakers'
observations and annotations

Kudugunta et al., MADLAD-400: A Multilingual And Document-Level Large Audited Dataset, NeurIPS'2023.

① deduplicate pages

En De Zh

② filter noisy pages ③ language identification ④ filter noisy sentences
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‣ Most of post-training datasets, including instruction and preference data 
also focus on English.

Unbalanced Data Distribution

Wang et al., How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources, NeurIPS'2023.
Singh et al., Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning, arXiv'2024.
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‣ LLM performs much worse in translation, reasoning, factual consistency,
etc., for languages that are dissimilar to English, such as Asian languages 
and African languages.

Scaling up does not solve Multilingualism

Shi et al., Language Models Are Multilingual Chain-Of-Thought Reasoners, ICLR'2023.
Qi et al., Cross-Lingual Consistency of Factual Knowledge in Multilingual Language Models, EMNLP'2023.
Zhu et al., Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis, Findings of NAACL'2024.

knowledge (Qi et al.)reasoning (Shi et al.)translation (Zhu et al.)
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‣ LLMs perform diversely for different languages in knowledge related tasks.

- especially poor when retrieving knowledge from other languages.

Knowledge related tasks
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Common Sense QA Factual QA Cross-lingual QA

Gao et al., Multilingual Pretraining and Instruction Tuning Improve Cross-Lingual Knowledge Alignment, But Only Shallowly, NAACL'2024.



‣ Knowledge retrieving seems to be the key obstacle in cross-lingual transfer,
i.e. performance in another language when trained in one.

‣ Knowledge-free tasks are better transferred to other languages.

Knowledge v.s. Cross-lingual Transfer

13

Model choice We selected several LLMs includ-260

ing LLaMA-2-7B-Chat (Touvron et al., 2023),261

BLOOMZ-MT-7B (Muennighoff et al., 2023),262

Mistral-7B-Instruct-v0.1 (Jiang et al., 2023), and263

Qwen-1.5-7B-Chat (Bai et al., 2023) to conduct264

transferability experiments on existing and syn-265

thetic datasets.266

For experiments focusing on the impact of the267

training language (Section 4.3.1) and interpretabil-268

ity (Section 4.4), we used LLaMA-2-7B-Chat as a269

representative model for analysis.270

For the experiments evaluating impact of the tar-271

get language proficiency in specific directions (Sec-272

tion 4.3.2), we selected derived models of LLaMA-273

2-7B and Mistral-7B to conduct experiments on274

Arabic and Hebrew respectively, both of which are275

low-resource languages.276

3.2 Fine-tuning settings277

We perform LoRA fine-tuning (Hu et al., 2021) on278

all model blocks in all experiments due to the lim-279

ited computational resources. More details about280

fine-tuning can be found in Appendix E.281

3.3 Decoding settings282

In all experiments, we perform constrained decod-283

ing to prevent the model from generating tokens284

other than the desired choices (Yes/No for Strate-285

gyQA, A/B/C/D for KFRD).286

In the interpretability analysis, we use the last287

token of the question to collect the hidden states288

and neural activation values, because the last input289

token is used to predict the next token, it gradually290

incorporates the primary information of the entire291

sentence, reflecting the overall thought process for292

the entire problem (Meng et al., 2022; Stolfo et al.,293

2023; Wu et al., 2024). By focusing on the model’s294

computational pathway for reasoning rather than295

calculating the similarity between multilingual sen-296

tences, we can better understand how the model297

processes complex queries. Calculating with an298

output token, on the other hand, would make it299

difficult to interpret the reasoning process. Addi-300

tionally, token counts differ across languages, com-301

plicating direct comparisons. Therefore, using the302

last input token helps in standardizing the analysis303

across different languages.304

To ensure consistency in the final token across305

different datasets, we added a language-specific ’?’306

to certain datasets. For details on these modifica-307

tions and metrics, please refer to Appendix D.308

4 Results 309

Figure 1: XLTR of different models on StrategyQA. Solid
lines: WF results; Dashed lines: NF results. The label of
training language (en) is capitalized.

Figure 2: XLTR of LLaMA-2-7B-Chat on StrategyQA under
different settings. NF stands for the No Facts setting, while
WF-1 and WF-2 indicate that one or two facts are given for
each question, respectively. WF-all signifies that all facts are
provided.

4.1 Impact of knowledge retrieval on 310

cross-lingual transfer 311

We analyze the impact of the amount of retrieved 312

knowledge on cross-lingual transfer in different set- 313

tings of the StrategyQA dataset. The results for 314

cross-lingual transfer ratio are presented in Fig- 315

ure 1, while the accuracy results are detailed in 316

Figure 12 in Appendix G. 317

Knowledge retrieval requirement harms cross- 318

lingual transfer The experimental results indi- 319

cate that, for all languages, the cross-lingual trans- 320

fer ratio of all models are significantly higher when 321

the necessary knowledge for reasoning is provided 322
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Figure 3: XLTR on the different parts of KFRD

compared to when it is not. This suggests that the323

requirement for knowledge retrieval significantly324

hinders the model’s cross-lingual transferability325

when solving reasoning problems.326

Less knowledge retrieval makes better cross-327

lingual transfer Additionally, we conduct a328

more detailed evaluation using the LLaMA-2-7B-329

Chat model to observe the changes in cross-lingual330

transfer ratio with varying amounts of knowledge331

entries. As shown in Figure 2, the experimental332

results demonstrate that the transfer rate increases333

as the number of provided knowledge entries in-334

creases from none to all required knowledge. This335

further validates the conclusion that the retrieval of336

more knowledge significantly impacts cross-lingual337

transferability.338

4.2 The cross-lingual transfer of339

knowledge-free reasoning340

We assess the cross-lingual transferability of the341

model’s knowledge-free reasoning capabilities. We342

evaluate the performance of the KFRD by training343

in English and transferring to the other 9 languages.344

The resulting cross-lingual transfer ratio are shown345

in Figure 3, and accuracy results are shown in Fig-346

ure 13 in Appendix G.347

The results demonstrate that the KFRD exhibits348

extremely high cross-lingual transfer performance349

for most language pairs. For 7 out of the 9 lan-350

guages, it can be observed that the cross-lingual351

transfer performance in knowledge-free reasoning352

tasks often exceeds 90%, with some instances ap-353

proaching 100%, thereby achieving near FCLT.354

However, for the two lowest-resource languages355

Arabic and Hebrew, the cross-lingual transferabil-356

ity is significantly poorer. We hypothesize that this357

may be due to the model’s weaker language pro-358

ficiency in these two languages, which adversely 359

affects its transferability. Further analysis on this 360

issue is provided in Section 4.3. 361

4.3 Impact of language proficiency on 362

cross-lingual transfer 363

In this section, we explore the impact of language 364

proficiency of the training and target language with 365

additional experiments. 366

4.3.1 Training language proficiency 367

To test the impact of training language proficiency, 368

we select German and Chinese as representatives 369

of high-resource languages, and Arabic and He- 370

brew as representatives of low-resource languages 371

as training languages. Then, we train models on 372

the KFRD in these languages and evaluated their 373

performance across the 10 languages. The accu- 374

racy results are shown in Figure 4, and the transfer 375

ratio is presented in Figure 5. 376

The results show that, though training with low- 377

resource languages resulted in slightly lower ac- 378

curacy (which is particularly noticeable in mathe- 379

matical datasets), the models show no significant 380

differences in transfer ratio when trained with high- 381

resource or low-resource languages, indicating that 382

the proficiency and resource of the training lan- 383

guage has no significant effect on the cross-lingual 384

transfer of knowledge-free reasoning. 385

4.3.2 Target language proficiency in specific 386

directions 387

In previous experiments, we observe strong cross- 388

linguistic transfer performance between most lan- 389

guages. However, the transferability from English 390

to Arabic and Hebrew was significantly weaker. 391

We hypothesize that this is related to the model’s 392

5

Knowledge Related Tasks Knowledge-free Tasks

Hu et al., Large Language Models Are Cross-Lingual Knowledge-Free Reasoners, arxiv'2024.



‣ Wendler et al. discover that when LLMs 
perform multilingual tasks, they show a 
three-phase working pattern.

‣ by observing layer-wise logit lens:

- phase 1: grounding to non-sense tokens

- phase 2: grounding to English tokens

- phase 3: grounding to non-English tokens

Understanding LLM's Multilingual Working Pattern

14

Phase 3

Phase 2

Phase 1

Wendler et al., Do Llamas Work in English? On the Latent Language of Multilingual Transformers, ACL'2024.



‣ layer-wise qualitative fine-grained observation

- entropy: whether latents are orthogonal to output token space

- token energy: how much of the latent is relevant for predicting the next 
token

- language probability: the prob that the grounded token belongs to a 
specific language

‣ proposed three-phase working pattern

- phase 1: context understanding

- phase 2: concept processing

- phase 3: token generation

Understanding LLM's Multilingual Working Pattern

15
Wendler et al., Do Llamas Work in English? On the Latent Language of Multilingual Transformers, ACL'2024.



‣ Language specific neurons are mainly 
distributed in the models' first and last few 
layers (Bhattacharya & Bojar., Kojima et al., 
Tang et al.).

‣ The models can control language in text 
generation by intervening with language-
specific neurons (Kojima et al., Tang et al.).

Neuro-level Analysis

Bhattacharya & Bojar, Unveiling Multilinguality in Transformer Models: Exploring Language Specificity in Feed-Forward Networks, arXiv'2023.
Kojima et al., On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons, NAACL.2024.
Tang et al., Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models, ACL'2024.

BLOOM-1.7B (Fr) LLaMA2-13B (Zh)
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‣ Disabling language-specific neurons 
harms performance, whereas 
deactivating random neurons does 
not.

‣ Fine-tuning language-specific 
neurons boost performance,  
whereas fine-tuning random 
neurons does not.

Neuro-level Analysis

Zhao et al., How do Large Language Models Handle Multilingualism? arXiv'2024.
17



‣ Same concept in different languages may activate the same internal
pattern.

Analysis of Internal Representation

18Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet (https://transformer-circuits.pub/2024/scaling-monosemanticity/).



‣ Observed:

- diverse performance across languages.

- knowledge retrieval/transfer affects the performance.

‣ Analysis:

- solving tasks in other languages may have a multi-phase working pattern.

- there are language specific and language agonistic neurons.

- there are shared patterns for the same concept in different languages.

‣ The step further:

- how do the cross-lingual effects/transfer happen?

- from understanding to improving multilingualism.

Take-away
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‣ Working pattern in three phrases

- Phase 1: context understanding requires language understanding

- Phase 2: concept processing requires knowledge retrieval, reasoning, ...

- Phase 3: token generation requires language generation

‣ Knowing the Language(s) affects all three phases.

- massive training with monolingual data

- leveraging existing multilingual models

‣ Advance Abilities

- multilingual post-training 

Improving LLM's Multilingual Performance

21



‣ tokenizer

- fertility issue: it is expensive to process under-represented languages.

- but vocabulary extension may have negative results (TowerLLM, LLaMaX).

Continual Pretraining Recipe

Hyung Won Chung., Large Language Models (in 2023), invited talk@Seoul National University.
Alves et al., Tower: An Open Multilingual Large Language Model for Translation-Related Tasks, arXiv'2024
Lu et al., LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages, Findings of EMNLP'2024
Zhao et al., LLaMA Beyond English: An Empirical Study on Language Capability Transfer, arXiv'2024

"Many words don't map to one token: indivisible."

tokenize

embedding
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‣ data collection

- multilingual monolingual resource, such as mC4, MADLAD-400, etc.

- multilingual parallel resource, such as CC100, ParaCrawl, LegoMT, etc.

- code-switched data augmentation

Continual Pretraining Recipe

Xue et al., mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer, NAACL'2021.
Kudugunta et al., MADLAD-400: A Multilingual And Document-Level Large Audited Dataset, arXiv'2023.
Banon et al., ParaCrawl: Web-Scale Acquisition of Parallel Corpora, ACL'2020.
Ji et al., EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models, arXiv'2024.
Yuan et al., Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation, Findings of ACL'2023.
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‣ data mixture

- incorporating English corpus avoids catastrophic forgetting

- mixing monolingual and parallel data achieves the highest quality

- generalize well even to unseen languages

Continual Pretraining Recipe

Alves et al., Tower: An Open Multilingual Large Language Model for Translation-Related Tasks, arXiv'2024.
Lu et al., LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages, Findings of EMNLP'2024.

TowerLLM (Alves et al.) LLaMAX (Lu et al.)
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‣ architecture: dense vs. sparse

- all-in-one model may encounter "multilingual curse" (Conneau et al.). 

- recent efforts start to explore enhancing the base model with language-
specific modules (Xu et al., Zhou et al. )

Continual Pretraining Recipe

Conneau et al., Unsupervised cross-lingual representation learning at scale, ACL'2020.
Xu et al., X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale, arXiv'2024.
Zhou et al., MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing, arXiv'2024.

multilingual 
curse

X-ALMA (Xu et al.)

MoE-LPR (Zhou et al.)
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‣ use an off-the-shelf multilingual encoder as an plug-in module to map 
multilingual queries into the English semantic space.

Multilingual Encoder as Plug-in

26

share similar philosophy as 
VLM

Yoon et al., LangBridge: Multilingual Reasoning Without Multilingual Supervision. ACL'2024.
Huang et al., MindMerger: Efficient Boosting LLM Reasoning in non-English Languages. NeurIPS'2024.
Liu et al., LLaVA: Large Language and Vision Assistant Visual Instruction Tuning. NeurIPS'2023.

LLaVA (Liu et al.)



‣ The multilingual encoder will map multilingual 
queries into LLM's English representation space.

‣ The plug-in multilingual encoder significantly 
narrows the gap between non-English languages 
and English.

- does not require any multilingual supervision

- generalize to multiple languages during test time

Multilingual Encoder as Plug-in

Yoon et al., LangBridge: Multilingual Reasoning Without Multilingual Supervision. ACL'2024.
27



‣ Enhancing input queries with mapped representations is 
more effective than replacing them.

‣ Larger encoder often has stronger mapping capability 
and achieves larger improvements.

‣ cons: limited in language generation

Multilingual Encoder as Plug-in

Huang et al., MindMerger: Efficient Boosting LLM Reasoning in non-English Languages, NeurIPS'2024.
28



‣ Improving the ratio of other languages by sampling

- show better alignment among languages

- fall behind English-centric models

Balanced Pretraining

29

Additionally, it also suffers from the curse of
multilinguality (Conneau et al., 2019; Chai et al.,
2022; Dubey et al., 2024; Gurgurov et al., 2024),
where the performance of individual languages
deteriorates as the number of languages increases.
On the other hand, continual pre-training, like
Aurora-M (Nakamura et al., 2024), LLaMAX (Lu
et al., 2024), is more efficient but risks catastrophic
forgetting of previously learned knowledge.

Supervised fine-tuning (SFT) often leverages
multilingual instruction data or incorporates trans-
lation tasks to address data scarcity (Shen et al.,
2023a; Lai et al., 2023; Wang et al., 2022). How-
ever, both continual pre-training and SFT rely heav-
ily on high-quality, diverse datasets, which are
often limited to many languages. Reinforcement
Learning from Human Feedback (RLHF) is increas-
ingly used to align models with human preferences
(Shen et al., 2023b). In multilingual LLMs, multi-
lingual RLHF data are used to train multilingual re-
ward models (Chen et al., 2024). However, RLHF
typically relies on human-annotated data, which
can be expensive and time-consuming to collect,
especially for under-resourced languages. While
these methods can achieve impressive performance,
they can also be computationally expensive and
may not generalize well to unseen languages.

3 Pretraining

We elaborate on the sources and domains of our
pre-training data and the efforts we have made in
the pre-processing stage in Section 3.1. Next, we
discuss the details of our FuxiTranyu architecture
in Section 3.2. We present the strategy we used to
determine which languages should be supported by
the FuxiTranyu series of models in Appendix A,
the details of our tokenizer training in Appendix B,
and the pre-training settings in Appendix C.1.

3.1 Data Collection

The quantity, diversity, and quality of data have
proven the most crucial factors determining the per-
formance of a pre-trained base model (Hoffmann
et al., 2022; Touvron et al., 2023a,b). In pursuit of
these objectives, we collect a substantial volume
of multilingual data to ensure there are enough to-
kens for pre-training, in line with scaling laws. Our
data collection encompasses a broad spectrum of
domains, including public web documents, ency-
clopedic content, reports, books, scientific articles,
and codes. To ensure the quality of the collected

Figure 1: Languages and domains distribution in the
pre-training data of FuxiTranyu.

corpora, we have employed heuristic quality filters,
learned quality filters, and deduplication processes.
The composition of the pre-training data mixture is
illustrated in Figure 1, and we will delve into the
specifics of data collection and pre-processing in
the remaining of this section.

A significant portion of our multilingual data
comprises web documents, a common approach in
open-sourced LLMs (Touvron et al., 2023a; Bai
et al., 2023; Cai et al., 2024; Young et al., 2024).
We opt to utilize CulturaX (Nguyen et al., 2023),
a filtered subset of OSCAR (Ortiz Su’arez et al.,
2020; Suárez et al., 2019) (itself a subset of Com-
mon Crawl) and mC4 (Raffel et al., 2020) datasets.
To improve quality and diversity, we supplement
these with data from ROOTS (Laurençon et al.,
2022), MultiUN (Eisele and Chen, 2010; Chen
and Eisele, 2012), and OpenSubtitles (Lison and
Tiedemann, 2016), focusing on languages in our
language list. Additionally, we incorporate data
from encyclopedias, reports, books, and articles,
drawing inspiration from Phi series models (Gu-
nasekar et al., 2023) that achieve strong results
using high-quality textbooks. We have collected
approximately 500GB of article data from Seman-
tic Scholar (S2ORC) (Lo et al., 2020), and around
10GB of Chinese books from the Fudan Cbook
dataset.4 We also source multilingual book data
from Project Gutenberg, though it forms a small
portion of the final corpus.

Additionally, we collect 535GB of code data
from open-source datasets, primarily from Star-
coder data,5 a subset of the Stack dataset (Kocetkov

4https://github.com/FudanNLPLAB/CBook-150K
5https://huggingface.co/datasets/bigcode/

starcoderdata

Models m-ARC m-Hellaswag m-MMLU XWinograd XCOPA XStoryCloze
(25-shot) (10-shot) (5-xhot) (5-shot) (0-shot) (0-shot)

Llama-2-7B 35.5 48.6 35.4 78.0 58.9 55.6
Mistral-7B-v0.1 40.7 54.5 46.7 80.5 55.8 57.2

BLOOM-7B1 31.8 43.4 27.1 70.0 56.9 58.2
PolyLM-13B 30.6 46.0 26.4 73.4 58.9 56.4

LLaMAX2-7B 33.1 50.3 26.7 76.9 54.5 58.8

FuxiTranyu-8B 32.7 51.8 26.6 76.1 60.5 58.9

Table 2: Average performance of FuxiTranyu-8B base model compared to BLOOM-7B1, PolyLM-13B, Llama-2-7B,
Mistral-7B-v0.1, and LLaMAX2-7B on mutlilingual discriminative and generative tasks.

Models m-ARC m-Hellaswag m-MMLU XWinograd XCOPA XStoryCloze Translation Summarization
(25-shot) (10-shot) (5-shot) (5-shot) (0-shot) (0-shot) (BLEU, 0-shot) (ROUGE, 0-shot)

Llama-2-Chat-7B 36.4 46.3 36.0 74.8 55.9 56.5 22.1 4.6
Mistral-7B-Instruct-v0.1 36.3 45.5 39.0 74.0 54.5 53.4 19.1 2.2

BLOOMZ-7B1 31.2 38.0 25.8 64.0 53.3 49.8 14.7 4.4
PolyLM-MultiAlpaca-13B 28.6 39.1 25.9 70.9 59.9 57.0 - -

LLaMAX2-Alpaca-7B 38.7 52.5 35.4 77.4 56.6 62.0 29.1 0.3

FuxiTranyu-8B-SFT 32.8 49.2 26.9 74.7 61.2 57.4 28.3 9.2

FuxiTranyu-8B-DPO 34.2 47.9 27.4 69.1 61.8 57.6 26.8 7.1

Table 3: Average performance of FuxiTranyu-8B instruct and chat models compared to BLOOMZ-7B1, Llama-2-
Chat-7B, and Mistral-7B-Instruct-v0.1 on mutlilingual discriminative and generative tasks.

Our model achieves the best performance on the
XCOPA and XStoryCloze tasks. For other tasks,
our model is significantly better than multilingual
models like BLOOM-7B and PolyLM-13B. When
compared to LLaMAX2-7B, the evaluation results
of our model are almost comparable, with no sig-
nificant difference from the evaluation results of
LLaMAX2-7B. But compared with English-centric
models, our model is still worse than Llama-2-7B
and Mistral-7B-v0.1 due to the limited training data
used for English.

5.2 Instruction-Tuned Model Evaluation

We further compared our instruction-tuned models
with other instruction-tuned models. We evaluated
these models on both discriminative and generative
tasks. Results are shown in Table 3. On discrim-
inative tasks, our models achieve the best result
on XCOPA. For m-Hellaswag, XWinograd, and
XStoryCloze, our models outperform the English-
centric models but slightly underperform the mul-
tilingual models compared with LLaMAX2-7B.
Our models still underperform in m-ARC and m-
MMLU tasks due to the limited training data used.

In generative tasks, our models excel on the sum-
marization task, outperforming all baseline models.
For the translation task, our models outperform the
English-centric models but slightly underperform
the multilingual model like LLaMAX2-Alpaca-7B.

More details of our evaluations are discussed in
Appendix D, where we report the results for each
language tested.

6 Analysis and Interpretability

We further conducted an interpretability analysis of
FuxiTranyu to provide a deep understanding of the
underlying mechanisms driving its multilingual ca-
pabilities. To ensure a comprehensive analysis and
consistency with prior research, we investigated
our models from both the neuron (Wu et al., 2023;
Shi et al., 2024; Leng and Xiong, 2024; Zhang
et al., 2024; Tang et al., 2024; Liu et al., 2024;
Kojima et al., 2024) and representation (Conneau
et al., 2020; Tiyajamorn et al., 2021; Chang et al.,
2022; Rajaee and Pilehvar, 2022; Xu et al., 2023;
Dong et al., 2024; Xie et al., 2024) perspectives.
Specifically, our neuron analysis explores the im-
portance of different neurons to the multilingual
abilities of the model, while the representation anal-
ysis examines the characteristics of multilingual
representations learned by the model. Here, we
first introduce the details and results of our neu-
ron analysis, while the representation analysis is
discussed in Appendix E.1.

6.1 Neuron Analysis

Neurons in a neural network are the basic compu-
tational units of the model. Different inputs may
fire neurons in different regions, leading to varied
outputs. This computational process can be un-
derstood from another perspective: different sets
of neurons in the model hold varying degrees of
importance for the inputs, thus producing differ-
ent responses and outputs. To better understand

Sun et al., FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data, arxiv'2024.



‣ PreAlign: pretrain the LLM for language alignment

‣ The alignment may help multilingualism since early stage of pretraining.

Early Establishment of Alignment

30
Li et al., PreAlign: Boosting Cross-lingual Transfer by Early Establishment of Multilingual Alignment, EMNLP'2024.



‣ PreAlign: pretrain the LLM for language alignment

‣ The alignment may help multilingualism since early stage of pretraining.

- improves the low-resource language and cross-lingual transfer

Early Establishment of Alignment

31Figure 4: Knowledge application accuracy at each training period of different models. f indicates the frequency of
the test knowledge.

5.3 Ablation Study

In this section, we present an ablation study of the
proposed methods. The results are in Table 3.

Solely input-only CS helps LM and ZS-CLT,

but not CLKA. Comparing Line #1 and Line #2,
we can see that adding input-only CS to the pre-
training stage can bring improvements to language
modeling and downstream cross-lingual transfer-
ring performance, which is consistent with findings
in previous works (Chaudhary et al., 2020; Yang
et al., 2021). However, the improvement on CLKA
is much smaller (27.7 ! 32.6).

Multilingual alignment initialization signifi-

cantly facilitates CLT, especially CLKA. By es-
tablishing multilingual alignment before language
model pretraining, all considered metrics that eval-
uating cross-lingual transfer are significantly im-
proved (Line #1 vs. Line #3 and Line #2 vs. Line
#4). Notably, this brings a much better CLKA
performance, highlighting the importance of early
multilingual alignment for knowledge transferring.

Combining Multi-Align Init with input-only

codeswitching achieves the best performance.

Finally, by comparing Line #4 vs. Line #2 and

Line #3, we can see the proposed two strategies
all contributes to the good performance that PRE-
ALIGN achieves.

Input-only codeswitching causes less mixed-

script problem. We also compare the proposed
input-only codeswitching strategy with the vanilla
codeswitching strategy in Table 4, in terms of both
English language modeling performance and the
ratio that generation results contains En-clone to-
kens. It can be seen that when the training time
codeswitching ratio is to 5%, adopting vanilla
codeswitching strategy would result in 4.17% sen-
tences contains En-clone tokens, which would
significantly decrease the generation quality in
real-world settings. However, the input-only
codeswitching strategy proposed in this paper ef-
fectively decrease the ratio to 0.02%, and achieves
better English LM perplexity.

5.4 Maintaining Multilingual Alignment

across Pretraining.

In order to understand how the injected multilin-
gual alignment information evolves during pretrain-
ing, we compute the similarity of aligned word
embedding at different training period (every 250

Li et al., PreAlign: Boosting Cross-lingual Transfer by Early Establishment of Multilingual Alignment, EMNLP'2024.



‣ One basic idea to enhance non-English 
performance is to create multilingual post-
training data using machine translation.

- for general task: Aya, Bactrian-X, Okapi

- for specific task: MathOctopus

Multilingual Post-training

Singh et al., Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning. ACL'2024.
Li et al., Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation. arXiv'2023.
Lai et al., Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback. EMNLP'2023.
Chen et al., Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations. arXiv'2023. 32



‣ performance improvement

- Improves multilingual performance with limited data (Shaham et al.).

‣ language generalization

- Enhances cross-lingual generalization in unseen languages (Shaham et al., 
Kew et al., Muennighoff et al.).

Pros of Multilingual Post-training

Muennighoff et al., Crosslingual Generalization through Multitask Finetuning, ACL'2023
Shaham et al., Multilingual Instruction Tuning With Just a Pinch of Multilinguality, ACL'2024
Kew et al, Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? arXiv'2024
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‣ cross-lingual alignment

- Multilingual Instruction-tuning can hardly improve cross-lingual 
consistency and conductivity (Gao et al.).

‣ data quality

- Translation engines struggle with lengthy texts with symbols (Zhu et al.).

‣ annotation cost

- Translating training data into multiple languages is costly, and evolving 
datasets quickly make translations outdated.

Cons of Multilingual Post-training

Gao et al., Multilingual Pretraining and Instruction Tuning Improve Cross-Lingual Knowledge Alignment, But Only Shallowly, NAACL'2024.
Zhu et al., Question Translation Training for Better Multilingual Reasoning, Findings of ACL'2024.
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‣ It is more challenge to improve advanced abilities, such as instruction
following, multi-turn conversation, human alignment, etc.

‣ Leveraging a pivot language, such as English, improves the process.

Leveraging Pivot Languages

35
Zhang et al., Plug: Leveraging pivot language in cross-lingual instruction tuning, ACL'2024.
Geng et al., Why Not Transform Chat Large Language Models to Non-English? arxiv'2024.
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Abstract

Instruction tuning has remarkably advanced
large language models (LLMs) in understand-
ing and responding to diverse human instruc-
tions. Despite the success in high-resource lan-
guages, its application in lower-resource ones
faces challenges due to the imbalanced foun-
dational abilities of LLMs across different lan-
guages, stemming from the uneven language
distribution in their pre-training data. To tackle
this issue, we propose pivot language guided
generation (PLUG), an approach that utilizes
a high-resource language, primarily English,
as the pivot to enhance instruction tuning in
lower-resource languages. It trains the model to
first process instructions in the pivot language,
and then produce responses in the target lan-
guage. To evaluate our approach, we introduce
a benchmark, X-AlpacaEval, of instructions
in 4 languages (Chinese, Korean, Italian, and
Spanish), each annotated by professional trans-
lators. Our approach demonstrates a significant
improvement in the instruction-following abili-
ties of LLMs by 29% on average, compared to
directly responding in the target language alone.
Further experiments validate the versatility of
our approach by employing alternative pivot
languages beyond English to assist languages
where LLMs exhibit lower proficiency.1

1 Introduction

Instruction tuning has emerged as a crucial step in
the evolution of generic AI assistants built atop
large language models (LLMs) (Ouyang et al.,
2022; Zhang et al., 2023b). Its fundamental princi-
ple involves fine-tuning LLMs to adhere to human
instructions, thereby generating responses that are
not only coherent but also aligned with the natural
language directives. As a result, instruction-tuned

† This work was done when Zhihan and Dong-Ho were
interns at Snap.

1Code and data are available at https://github.com/
ytyz1307zzh/PLUG.

詹姆斯·韦伯望远镜是什么？
(What is James Webb Telescope?)

Respond in Chinese.

詹姆斯·韦伯望远镜是……???
(James Webb Telescope is ……???)

詹姆斯·韦伯望远镜是什么？
(What is James Webb Telescope?)

Think in English, then respond in Chinese.

詹姆斯·韦伯望远镜是一个红外线太空望远镜！
(James Webb Telescope is an infrared space telescope!)

Let me interpret the instruction in
English: What is James Webb
Telescope? So the English response
is: James Webb Telescope is an
infrared space telescope……

Figure 1: When humans struggle to learn a second lan-
guage, they tend to comprehend the instruction and
draft a response in their native language, before finally
responding in the target language. With a similar philos-
ophy, we train LLMs to utilize a high-resource language
as the pivot language when responding to instructions
in the target language.

models are able to solve a wide range of tasks
given instruction-based prompts, without the need
for task-specific adaptation (Chung et al., 2022;
Mukherjee et al., 2023). Moreover, instruction tun-
ing imparts LLMs with the capacity for human-like
interactions, such as engaging dialogue with users
(Xu et al., 2023b; Köpf et al., 2023).

Despite the great potential of instruction tuning,
the aforementioned success is mainly made in high-
resource languages like English. As a result, its
application in other lower-resource languages has
raised interest within the multilingual research com-
munity. The straightforward strategy entails train-
ing LLMs to perform monolingual response genera-
tion – producing responses in the same language as
the given instructions (Conneau et al., 2020; Ruder
et al., 2021; Wei et al., 2023; Chen et al., 2023c).
However, this endeavor is fraught with challenges.
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‣ Enabling support for more languages with existing LLMs involves continue
pre-training: tokenization, data mixture, multilingual curse, etc.

‣ Multilingualism could also be taken care of since pretraining, or even
earlier.

‣ Post-training also improves the multilingual ability, but requires more
advanced labeled data.

‣ Further Step:

- more efficient solution (data, compute)

- may come from better alignment/pivot

Take-away

36



Tutorial Roadmap
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‣ Explicit Approaches

- Prompting LLM to think in English (Shi et al., Qin et al.)

- Prompting LLM to translate the question and answer (Shi et al., Huang et al., Qin et al.)

‣ Implicit Approaches

- Eliciting English thinking with translation tasks (Zhu et al.)

- Improve non-English thinking with English thinking via Preference optimization (She et 
al.)

‣ Test-bed

- mGSM (the multilingual benchmark adopted by most leading LLM teams)

Make the Best Use of LLM's English Expertise
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‣ Task: based on the given math question, predict the numerical answer with 
multiple reasoning steps.

‣ Shi et al. extend this to a multilingual task (mGSM).

mGSM: Multilingual Mathematical Reasoning

Shi et al., Language Models Are Multilingual Chain-Of-Thought Reasoners. ICLR'2023.

English

German

Chinese

human-translate
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‣ Intermediate reasoning steps help models achieve substantial reasoning 
performance gains across all languages.

‣ Prompting LLM to solve the problem with English CoT

- English in-context exemplars & English prefix: "Step-by-Step Answer"

- English CoT consistently lead to competitive or better results than those 
written in the native language of the question

Explicit Approach: Ask LLM to Think in English

Shi et al., Language Models Are Multilingual Chain-Of-Thought Reasoners. ICLR'2023.
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‣ Prompting LLM to translate question into English and answer it with 
English CoT.

‣ This increases inference cost and is less effective for LLMs with weak 
multilingual translation capabilities.

Explicit Approach: Translate-test

Huang et al., Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting, Findings of EMNLP, 2023
Qin et al., Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Languages. EMNLP, 2023 41



‣ Training LLM on translating non-English to English strengthens language 
alignment and implicitly encourages LLM to connect non-English questions 
to English questions.

Implicit Approach: Question Translation Training

Zhu et al., Question Translation Training for Better Multilingual Reasoning, Findings of ACL'2024.
Zhu et al. The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights, arXiv'2024.
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‣ The added QAlign stage significantly reduce the gap between non-English 
languages and English.

‣ Perform well with both chain-of-thought reasoning and program-of-
thought reasoning.

Flexible Modular Framework

Zhu et al., Question Translation Training for Better Multilingual Reasoning, Findings of ACL'2024.
Zhu et al. The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights, arXiv'2024.
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‣ The question alignment framework effectively scales to extremely large 
language models, both dense and sparse.

‣ Proxy-tuning can quickly extrapolate the results from small models to large 
models without updating any parameters in the large model.

Scalable Language Alignment

Zhu et al., The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights, arXiv'2024.
Liu et al., Tuning Language Models by Proxy, COLM'2024.

44



‣ Another evidence of establishing language alignment is the improvement it 
brings to the consistency of predicted answers against multilingual queries. 

Consistency across Multilingual Query

Zhu et al., Question Translation Training for Better Multilingual Reasoning, Findings of ACL'2024.
Zhu et al. The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights, arXiv'2024.
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‣ Improve LLM's multilingual ability with the help of its English thinking, 
which requires no additional labeling

- free, internal teacher, which requires no additional labeling

- step 1: preference estimation

- step 2: preference optimization

Implicit Approach: Preference Optimization

46
She et al., MAPO: Advancing Multilingual Reasoning through Multilingual Alignment-as-Preference Optimization, ACL'2024.



‣ After the preference optimization, the non-English thinking are more
similar to the English thinking.

Making Reasoning Path More Consistent

She et al., MAPO: Advancing Multilingual Reasoning through Multilingual Alignment-as-Preference Optimization, ACL'2024.
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‣ Comparing to multilingual post-training, which requires extensive data
labeling, leveraging English abilities seems to be a more efficient solution.

- close-source models only allow explicit approaches

- implicit approaches pushes open-source models to a new height.

‣ Further Step:

- Using English v.s. Using Native Language

- More general solution that generalize across tasks.

- Implicit solution that does not affect user experience.

Take-away
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‣ Chapter V: Future Challenges 

Tutorial Roadmap
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‣ Developing multilingual system for real-world applications

- evaluation📏: from specific tasks to general tasks 

- data📊: from basic data mixing to strategic data mixing

- model🧭: from action model to reward model

- culture⛵: from fully sharing to selective sharing

What's Next?
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‣ Math reasoning is still far away from real-world applications.

‣ Developing more powerful multilingual systems requires the curation of 
reliable and comprehensive benchmark.

From Specific Task to General Tasks

GPT-4o Gemini-1.5Llama3
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‣ Estimating the optimal data mixture recipe is one of the key problems in 
multilingual research.

‣ He et al. pioneered the formulation of a multilingual scaling law.

- The cross-entropy loss (L) is related to model size (N), dataset size (D), 
and sampling ratios for different language families (p).

From Basic Mixing to Strategic Mixing

He et al., Scaling Laws for Mul6lingual Language Models, arXiv’2024. 52



‣ Reward model is becoming 
increasingly important

- LLM-as-a-judge

- self-improvement

- test-time scaling

‣ Multilingual Reward Model

- Again, reward model face challenges 
in multilingual context.

- Is it possible to adapt English reward 
model to multilingual scenarios?

From Action Model to Reward Model

53Wu et al. Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment. arXiv'2024.
Gureja et al. M-REWARDBENCH: Evaluating Reward Models in Multilingual Settings. arXiv'2024.



‣ Not all capabilities/knowledge should be shared across languages, as 
transferring English proficiency may introduce English bias.

- For example, dragons symbolize different meanings in different cultures.

From Fully Sharing to Selective Sharing

Chinese dragon western dragon
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‣ Adding new modalities, such as vision, will definitely makes LLM more 
capable.

‣ How will different modalities interact, and how will the added modality 
impact the model's multilingual capabilities? 

From Single-Modality to Multi-Modality

Yue et al. Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages. arXiv'2024.
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‣ Although LLMs have become highly capable, 
their multilingual performance remains uneven.

‣ Breaking the language barriers may be
essential for fair-usage of LLMs.

‣ Progress have been made in understanding
and improving the multilingual process of
LLMs.

‣ But still more challenges ahead!

- Knowledge, Reasoning, Alignment.

Conclusion
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