

k-Nearest-Neighbor Machine Translation

Shujian Huang and Wenhao Zhu National Key Lab of Novel Software Technology Department of Computer Science and Technology, Nanjing University

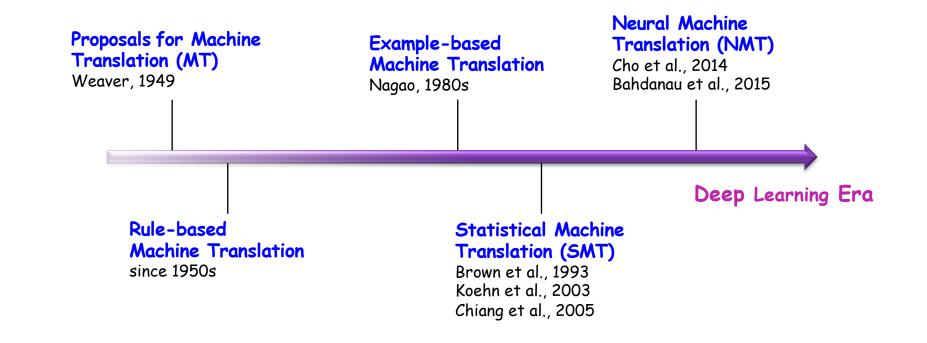
Outline

Part 1: Introduction Part 2: Basic Approach Part 3: Dive into kNN-MT: Effectiveness Efficiency Interpretability **Part 4: Applications** Part 5: Conclusions

(Shujian) (Shujian)

(Shujian) (Wenhao) (Wenhao) (Wenhao) (Shujian)

Part 1: Introduction



• In statistical machine translation, the knowledge are extracted as symbolic rules.

the attempted		
Add to that its the EU and ste chip away at T The Russian le support of the	安卡拉对于西方世界对接管意图的微弱反应感到愤怒。 怒。 此外,安卡拉对于加入欧盟谈判的缓慢进展及普京 的插手长期感到不满,普京热衷于利用政治寒意以	
Mind you, tha fear of regime So the summit	及削弱土耳其与西方世界的关系。 由于在政变失败后拥护当选当局,俄罗斯领导人必 将获得安卡拉的加分。	
to present wh two countries forces. Still, despite th	注意,这对于一直对政权更迭怀抱根深蒂固恐惧的 莫斯科来说是一种馈赠。 因此,在这个金碧辉煌的海边宫殿所举行的会面使 俄罗斯与土耳其内个被西方世界把绝与虐待的国家	
differences. The key one is peacemaker b It could be tel	结成盟友,一位分析师将其描述为"格格不入联 盟"。 然而,尽管公开和解,但双方仍存在重大分歧。 叙利亚是关键因素之一。莫斯科近日在叙利亚扮演	
presidents tole the topic. Turkey's presie	和事佬的角色,而俄罗斯与土耳其却支持相反派别。 可以预见到的是,在经过近三个小时的初步谈话后, 两位总统在发布会上表示,尚未谈及那个话题。	
differences, w There is no cle on Syria. But after mont	土耳其总统刻意回避关于双方分歧的问题,而普京 则予以强调。 双方就如何在叙利亚问题上求同存异未达成明确共 识。	
disaster when it is surely bet Royal Bank of	在北大西洋公约组织成员国土耳其击落俄战机所带 来的数月公开敌对及引发大型灾难的可能下,两国 领导人再次重启对话肯定是件好事。	
	苏格兰皇家银行将不再为苏格兰以外客户服务	┝

Parallel Data (En-Chs)

30->30 来->over 多年->the, last, years 友好->friendly

(b) 单词翻译规则示例

30 多年->the last 30 years 30 多年 来->over the last 30 years 友好 合作->friendly cooperation 的 友好->friendly

(c) 短语翻译规则示例

30 -> 30

X 多年–>the last X years

X 的 X->X2 X1

友好 合作->friendly cooperation

(d) 层次翻译规则示例

QP(CD 30)(CD 多年)(LC 来)->the last 30 years

友好 合作->NP(JJ friendly)(NN cooperation) QP(CD 30)(CD 多年)(LC 来)->NP(DT the)(JJ last)(CD 30)(NNS years)

(e) 句法翻译规则示例

Translation Rules of Different Types (words, phrases, hierarchical phrases or syntactic phrases)

• In statistical machine translation, the knowledge are extracted as symbolic rules.

- retrieved by an exact matching of symbols
- suffers greatly from data sparseness

30->30 来->over 多年->the, last, years 友好->friendly

(b) 单词翻译规则示例

30 多年->the last 30 years友好 合作->friendly cooperation30 多年 来->over the last 30 years的 友好->friendly

(c) 短语翻译规则示例

30->30 X 多年->the last X years X 的 X->X2 X1

友好 合作->friendly cooperation

(d) 层次翻译规则示例

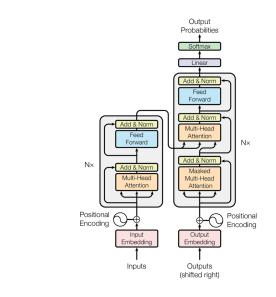
QP(CD 30)(CD 多年)(LC 来)->the last 30 years 友好 合作->NP(JJ friendly)(NN cooperation) QP(CD 30)(CD 多年)(LC 来)->NP(DT the)(JJ last)(CD 30)(NNS years)

(e) 句法翻译规则示例

Translation Rules of Different Types (words, phrases, hierarchical phrases or syntactic phrases)

• In neural machine translation, the knowledge is explicitly embedded in the parameters of the neural networks.

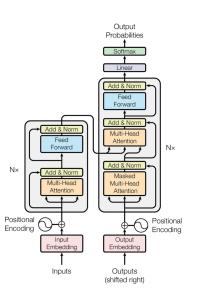
the attempted	
the attempted Add to that its the EU and ste chip away at T The Russian le support of the support of the faar of regime So the summit to present wh two countries forces. Still, despite th differences. The key one is peacemaker b It could be tel presidents tol the topic. Turkey's presi differences, wither on offerences of there is no cle	takeover. 安卡拉对于西方世界对接管意图的微弱反应感到愤怒。 此外,安卡拉对于加入欧盟谈判的缓慢进展及普京 的插手长期感到不满,普京热衷于利用政治寒意以 及削弱土耳其与西方世界的关系。 由于在政变失败后拥护当选当局,俄罗斯领导人必 将获得安卡拉的加分。 注意,这对于一直对政权更迭怀抱根深蒂固恐惧的 莫斯科来说是一种馈赠。 因此,在这个金碧辉煌的海边宫殿所举行的会面使 俄罗斯与土耳其两个被西方世界拒绝与虐待的国家 结成盟友,一位分析师将其描述为"格格不入联 盟"。 然而,尽管公开和解,但双方仍存在重大分歧。 叙利亚是关键因素之一。莫斯科正日在叙利亚扮演 和事佬的角色,而俄罗斯与土耳其却支持相反派别。 可以预见到的是,在经过近三个小时的初步谈话后, 两位总统在依有会上表示,尚未谈及那个话题。 土耳其总统刻意回避关于双方分歧的问题,而普京 则予以强调。
on Syria. But after mont	双方就如何在叙利亚问题上求同存异未达成明确共 识。
But after mon disaster when it is surely bet Royal Bank of	在北大西洋公约组织成员国土耳其击落俄战机所带 来的数月公开敌对及引发大型灾难的可能下,两国 领导人再次重启对话肯定是件好事。
	苏格兰皇家银行将不再为苏格兰以外客户服务



Transformer

Attention is all you need. Vaswani et al. NIPS2017.

- In neural machine translation, the knowledge is explicitly embedded in the parameters of the neural networks.
 - tokens as continuous vectors
 - translation by computation
 - big models trained on big data
- Neural methods generalize better than exact matching of symbols.



Transformer

Learnability

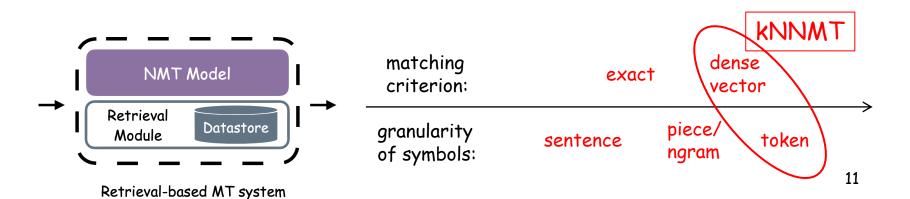
- cannot memorize all translation knowledge in training data, especially for low-frequency events
- Interpretability
 - cannot give evidence to support its translation decision
- Extensibility
 - cannot incorporate new translation knowledge without updating neural parameters

• Two systems are complementary.

Neural	learns general trends better generalization	
Symbolic	memorizes specific events human interpretable easy to control or modify	

• Combining the two philosophies may bring further improvement to the whole learning system.

- Performing translation with the help of a symbolic datastore!
 - example based machine translation (Nagao, 1984)
 - search engine for sentences (Gu et al., 2018)
 - search engine for translation pieces (Zhang et al., 2018)
 - n-gram retrieval using dense vectors (Bapna and Firat, 2019)
 - token level retrieval using dense vectors (Khandelwal et al., 2021)

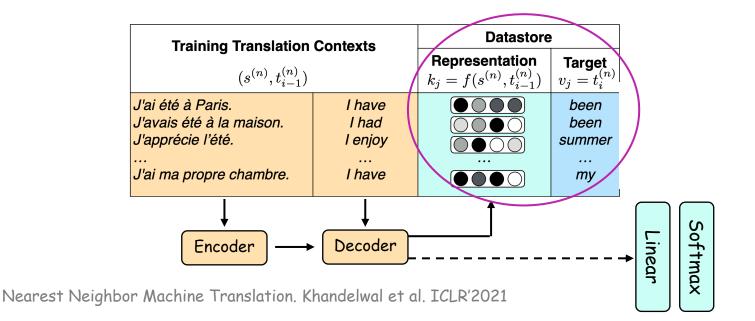


Part 2: Basic Approach

The Idea of kNN-MT (previously kNN-LM)

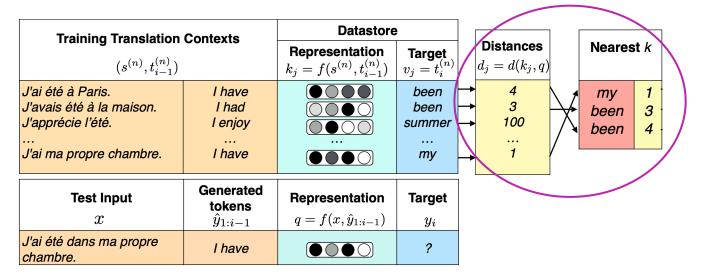
- Build an extra symbolic datastore
 - save linguistic knowledge as key-value pairs
 - (key: neural vector, value: symbolic token)
- Leverage the extra datastore
 - enable the neural model to retrieve knowledge from datastore
 - consider both systems and make final decision

- Step 1 Build datastore for NMT model
 - a single forward pass over a bilingual corpus (e.g., training set)
 - (key: translation context representation, value: target token)



kNN-MT

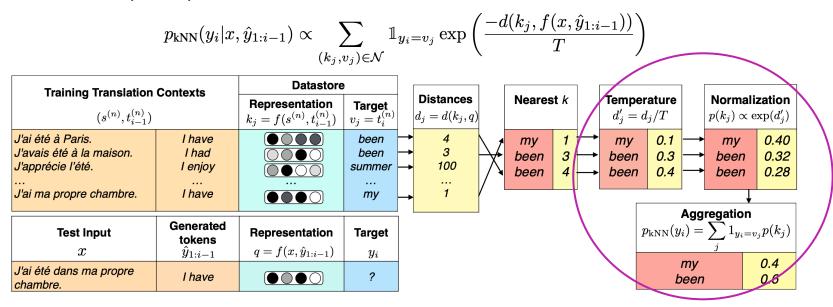
- Step 2- Query datastore at each inference step
 - query with the representation of test translation context to retrieve k nearest entries (neighbors)



kNN-MT

Step 3 - Utilize query results

• compute prediction distribution with retrieved entries



Nearest Neighbor Machine Translation. Khandelwal et al. ICLR' 2021

- Step 3 Utilize query results
 - compute prediction distribution with retrieved entries
 - make final prediction
 - Interpolate the prediction of NMT and kNN with weight λ

 $p(y_i|x, \hat{y}_{1:i-1}) = \lambda \ p_{kNN}(y_i|x, \hat{y}_{1:i-1}) + (1-\lambda) \ p_{MT}(y_i|x, \hat{y}_{1:i-1})$

- Empirical results show that kNN-MT enjoys advantages over a simple NMT model in three settings:
 - single language pair MT
 - multilingual MT
 - domain adaptation

- NMT model: winner model of WMT'19 German-English news translation task
- datastore: 770M tokens of WMT'19 training data
- main results
 - 37.59 BLEU -> 39.08 BLEU on newstest2019
- Even very strong translation models can be improved with a symbolic datastore of the training set.

• kNN-MT achieves an average improvement of 1.4 BLEU across 17 language pairs/directions.

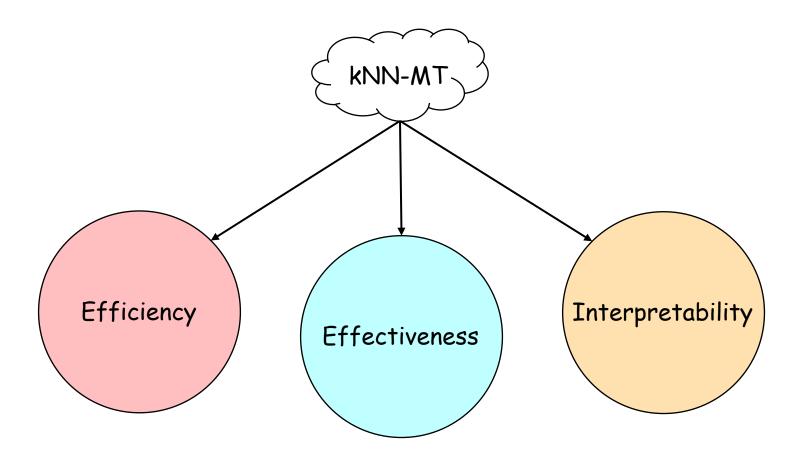
Test set sizes	de-en 2,000	ru-en 2,000	zh-en 2,000	ja-en 993	fi-en 1,996	lt-en 1,000	de-fr 1,701	de-cs 1,997	en-cs 2,000
Base MT +kNN-MT	34.45 35.74	36.42 37.83	24.23 27.51	12.79 13.14	25.92 26.55	29.59 29.98	32.75 33.68	21.15 21.62	22.78 23.76
Datastore Size	5.56B	3.80B	1.19B	360M	318M	168M	4.21B	696M	533M
Test set sizes	en-de 1,997	en-ru 1,997	en-zh 1,997	en-ja 1,000	en-fi 1,997	en-lt 998	fr-de 1,701	cs-de 1,997	Avg.
Test set sizes Base MT +kNN-MT				•					0

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR' 2021

- kNN-MT presents a new paradigm for domain adaptation, with performance similar to fine-tuning.
- kNN-MT enables quick adaptation by switching datastores.

	Medical	Law	IT	Koran	Subtitles	Avg.
Test set sizes	2,000	2,000	2,000	2,000	2,000	-
Aharoni & Goldberg (2020): one model per domain one model for all domains best data selection method	56.5 53.3 54.8	59.0 57.2 58.8	43.0 42.1 43.5	15.9 20.9 21.8	27.3 27.6 27.4	40.34 40.22 41.26
Base MT +kNN-MT:	39.91	45.71	37.98	16.30	29.21	33.82
in-domain datastore	54.35	61.78	45.82	19.45	31.73	42.63

Part 3: Dive into kNN-MT



- Although ability demonstrated in previous scenarios, there are still issues affect the effectiveness.
 - stability issues
 - resource issues

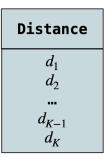
Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL'2021 Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP'2022. Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP'2021 Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI'2022 Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP'2021 **24**

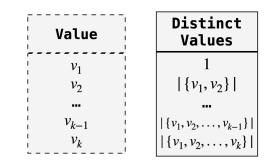
- Hyper-parameters affect the stability of kNN-MT!
- The number of nearest neighbors need to be tuned on the dev set, to avoid the two cases:
 - too small may overfit to closest neighbors
 - too large may include irrelevant neighbors
- It would be better to dynamically determine k at each decoding step.
 - If there are more relevant neighbors, use a larger k.
 - Otherwise, use a smaller k.

Setting 1: MT Domain Adaptation

• Evaluating relevance of retrieved knowledge

- distance between query and key (close neighbors are more relevant)
- consistency among retrieved knowledge (consistent query results are more relevant)



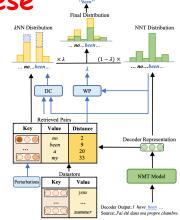


Setting 1: MT Domain Adaptation

- Use a meta-k network to choose k from {0, 1, 2, 4, 8, ...} dynamically according to relevance of retrieved knowledge.
- The network could be very simple, because the input is simple. Distance Distinct $p_{Meta}(k=0)$ Values $p_{Meta}(k=2^0)$ d_1 Meta-k d_2 $|\{v_1, v_2\}|$ $p_{Meta}(k=2^3)$ Network d_{K-1} $|\{v_1, v_2, \ldots, v_{k-1}\}|$ Т $p_{Meta}(k=K)$ $|\{v_1, v_2, \ldots, v_k\}|$ Feed-Forward Feed-Forward

2 layers, d=32, trained with only 2000 sentences

- Other hyperparameters also affect the final prediction distribution of kNN-MT.
 - T as the temperature
 - λ as the weight of combining KNN and NMT
- It would be better to dynamically determine these hyperparameters at each decoding step as well.



Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP'2022.

outperform vanilla kNN-MT on different target domains

	Domain	IT (B	ase NMT:	38.35)	Med (Base NMI	: 39.99)	Koran	(Base NM	T: 16.26)	Law	Base NMT	: 45.48)		Base NMT:	35.02)
	Model	V	U	Α	V	U	Α	V	U	Α	V	U	Α	V	U	Α
	1	42.19	41.21	42.52	51.41	50.32	51.82	18.12	17.15	18.10	58.76	58.05	58.81	42.62	41.68	42.81
	2	44.20	41.43	46.18	53.65	52.44	55.20	19.37	17.36	19.12	60.80	59.81	61.76	44.50	42.76	45.56
v	4	44.89	42.31	47.23	54.16	53.01	55.84	19.50	17.88	19.69	61.31	60.75	62.89	44.97	43.49	46.41
r	8	45.96	42.46	48.04	54.06	53.46	56.31	20.12	18.59	20.57	61.12	61.37	63.21	45.32	43.97	47.03
	16	45.36	43.05	47.71	53.54	54.08	56.41	20.30	19.45	21.09	60.21	61.52	63.07	44.85	44.53	47.07
	32	44.81	43.78	47.68	52.52	53.95	56.21	19.66	19.99	20.96	59.04	61.53	63.03	44.00	44.81	46.97
	$\sigma^2(K \ge 4)$	$\mid 0.21$	0.33	0.08	$\mid 0.42$	0.18	0.05	0.10	0.65	0.30	0.81	0.10	0.01	0.24	0.26	0.07

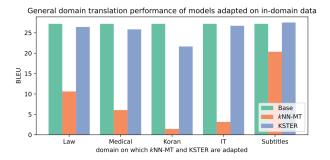
Zheng et al. 2021

Model	IT	Medical	Koran	Law	Avg.
base NMT	38.35 / 0.391	40.06 / 0.468	16.26 / -0.018	45.48 / 0.574	35.04 / 0.354
vanilla k NN-MT	45.92 / 0.531	54.46 / 0.548	20.29 / -0.014	61.27 / 0.662	45.48 / 0.432
adaptive kNN-MT	47.88 / 0.567	56.10/0.572	20.43 / 0.037	63.20 / 0.692	46.90 / 0.467
our model	48.90 ‡ / 0.585 ‡	57.28‡ / 0.578	20.71 / 0.047 †	64.07 ‡ / 0.703 ‡	47.74 / 0.478

Jiang et al. 2022

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL'2021. Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP'2022.

- Using a mixed datastore for different domains may also bring stability issue.
 - E.g., Adapted model often performs poorly on general domain.
 - For general domain translation, it would be better to discard knowledge retrieved from specific-domain datastore.



• The decision should be made according to the domain!

Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP'2021.

• Use a learnable kernel to dynamically control the shape of kNN distribution.

$$p_{kNN}(y_i|x, \hat{y}_{< i}) \propto \sum_{y_i = v_j} \exp(\frac{-d(\mathbf{q}_i, \mathbf{k}_j)}{T})$$

$$p_e(y_i|x, \hat{y}_{< i}) = \frac{\sum_{y_i = v_j} K(\mathbf{q}_i, \mathbf{k}_j; \sigma)}{\sum_j K(\mathbf{q}_i, \mathbf{k}_j; \sigma)}$$

• Model the bandwidth σ of kernel function and mixing weight λ with learnable neural networks.

Setting 2: Multi-domain MT

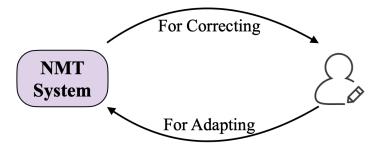
- outperforms kNN-MT in domain-specific translation
- performs far better in general domain after adaptation

Direction	Methods	Law	Medical	Koran	IT	Subtitles	Average-specific	Average-general (WMT14)
	Base	33.36	30.54	10.16	22.99	20.65	23.54	27.20
	Finetuning	49.07	47.10	25.98	36.28	26.00	36.89	14.17
EN-DE	kNN-MT	51.88	47.02	18.51	29.12	22.46	33.80	8.32
	KSTER	53.63	49.18	19.10	30.28	22.54	34.95	25.63
	Base	36.80	33.36	11.24	29.21	23.13	26.75	31.49
	Finetuning	55.19	51.35	22.87	41.88	28.33	39.92	17.82
DE-EN	kNN-MT	57.40	50.92	15.74	34.92	25.38	36.87	13.18
	KSTER	59.41	53.40	16.97	35.74	25.94	38.29	30.23

• After a joint training on multiple domains, KSTER outperforms kNN-MT with a mixed datastore.

Direction	Methods	General (WMT14)	Law	Medical	Koran	IT	Subtitles	Average-specific
	Base	27.20	33.36	30.54	10.16	22.99	20.65	23.54
	Joint-training	27.25	45.02	44.52	15.43	34.48	25.16	32.92
EN-DE	kNN-MT	24.72	51.24	46.54	16.29	29.55	21.80	33.08
	KSTER	27.69	53.04	49.23	15.94	31.82	22.63	34.53
	Base	31.49	36.80	33.36	11.24	29.21	23.13	26.75
	Joint-training	31.62	50.95	47.48	18.13	39.57	27.73	36.77
DE-EN	kNN-MT	25.87	57.38	50.83	14.57	37.56	22.86	36.64
	KSTER	31.94	58.64	52.79	15.24	36.90	25.15	37.74

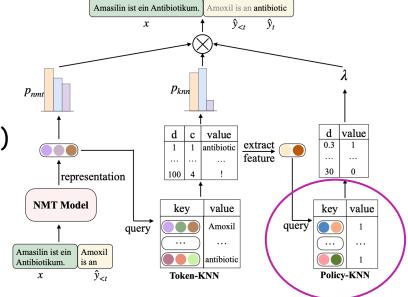
- Interactive Machine Translation (IMT)
 - The human translators revise the machine-generated translations.
 - The corrected translations are used to improve the NMT system.
- IMT requires Online learning
- kNN fits well, because it learns without changing the original model.
- However, the datastore is gradually increasing, affecting the effectiveness of kNNMT.



Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI'2022.34

- Dynamically choose λ by querying a datastore that saves policy about whether retrieved knowledge can be trust (kNN over kNN).
- Policy Datastore
 - key: features of retrieved
 knowledge (distance + distinct values)
 - value: gold value of λ

$$oldsymbol{\lambda} = egin{cases} 1 & p_{ ext{KNN}}(y_t | oldsymbol{x}, oldsymbol{y}_{< t}) > p_{ ext{NMT}}(y_t | oldsymbol{x}, oldsymbol{y}_{< t}) \ 0 & p_{ ext{KNN}}(y_t | oldsymbol{x}, oldsymbol{y}_{< t}) \le p_{ ext{NMT}}(y_t | oldsymbol{x}, oldsymbol{y}_{< t}) \end{cases}$$



Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI'2022.35

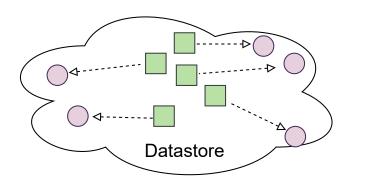
- achieve consistent improvements on documents with different lengths
- outperforms kNN-MT and online tuning

Bucket	0-50		50-100		100-200		200-500		500-1000		Average	
Бискеі	BLEU	TER	BLEU	TER	BLEU	TER	BLEU	TER	BLEU	TER	BLEU	TER
Pre-Trained	43.8	52.1	43.1	52.8	38.3	54.0	41.9	53.8	40.8	53.4	41.6	53.2
Online Tuning	44.0	52.2	43.5	52.3	39.6	51.4	43.8	51.8	44.7	49.3	43.1	51.4
KNN-MT	43.8	52.6	43.6	52.5	40.0	53.1	43.8	52.3	44.2	50.8	43.1	52.3
Adaptive KNN-MT	29.7	70.2	28.9	70.3	35.9	58.4	37.2	61.2	48.2	50.3	36.0	62.1
КоК	44.4	52.1	43.9	52.4	44.1	50.0	45.7	51.1	53.7	43.7	46.4	49.9

Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI'2022.36

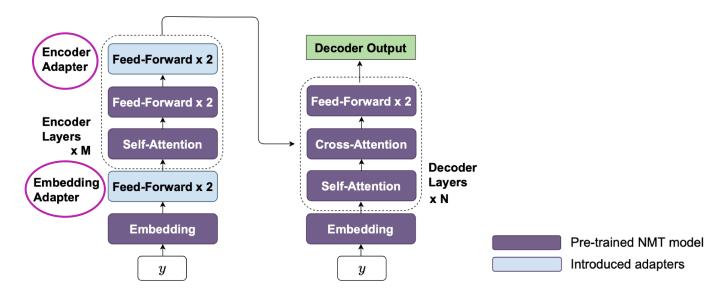
- Building datastore requires high-quality bilingual data, which is not available in unsupervised domain adaptation.
 - back-translation is a trivial solution but requires an additional reverse translation model
- Context representation from monolingual data may be in a different representation space, w.r.t. those from bilingual data.

 obtain context representation of (y,y) with an autoencoder and align target-side representation of (x,y) and (y,y)



- Ideal representations generated with pretrained model using parallel pair (x, y)
- Synthetic representations generated with our methods only using pair (y, y)
- -----> Objective of our method

• train an light-weight adapter to align the represent@ $ions_{\theta} \sum_{(x, y) \in (\mathcal{X}, \mathcal{Y})} \sum_{t} ||h'_{(y; y_{<t})} - h_{(x; y_{<t})}||^2$,



Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP'2021. 39

- improved performance with only monolingual data
- achieve competitive results against BT-KNN, but without extra translation of monolingual data

Model	IT	Medical	Law	Koran	Avg
Basic NMT	38.35	39.99	45.48	16.26	35.02
Empty-kNN Copy-kNN	$ \begin{array}{c} 38.06 \\ 38.96 \end{array} $	$40.01 \\ 40.86$		$16.44 \\ 17.06$	
BT-kNN	41.35	47.02		19.58	
UDA-kNN	41.57	46.64	52.02	19.42	39.91
Parallel-kNN	45.96	54.16	61.31	20.30	45.43

Effectiveness

- kNN-MT is less stable because:
 - · different level of noises retrieved for different tokens,
 - different domain requires different usage of the datastore,
 - the datastore is changing (e.g., built gradually).
- The datastore may be built without parallel data.
- Different scenarios bring interesting challenges.

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL'2021

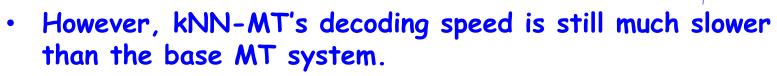
Towards Robust k-Nearest-Neighbor Machine Translation, Jiang et al. EMNLP'2022. Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP'2021 Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI'2022 Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP'2021

Part 3: Dive into kNN-MT: Efficiency

Can We Accelerate Inference Speed of kNN-MT?

,q(y)

- FAISS: a Library for nearest neighbor search .
 - Product Quantizer (PQ)
 - Inverted File (IVF)
 - <u>https://github.com/facebookresearch/faiss</u>



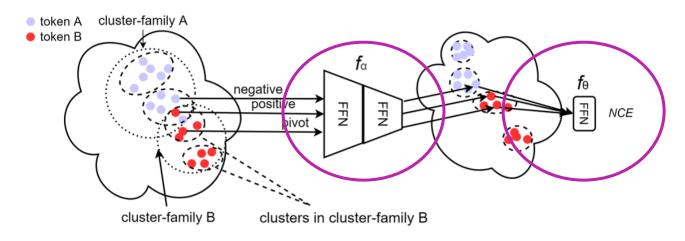
• x100, batch = 1

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR' 2021 Product quantization for nearest neighbor search. Jégou et al., PAMI'2011 Searching in one billion vectors: re-rank with source coding. Tavenard et al., ICASSP'2011 Billion-scale similarity search with GPUs. Johnson et al., ArXiv'2017

- Neural representations are high-dimensional vectors, so computing similarities are expensive.
- Symbolic tokens are collected for all the occurrences of the training data, so the datastore is huge (billions of entries).
- The query is performed at each decoding step.

- reduce the dimension of contextualized representation
 - principal component analysis (PCA) (Martins et al., 2022)
 - singular value decomposition (SVD) (Wang et al., 2022)
 - cluster-based feature compression (Wang et al., 2022)

- cluster-based feature compression
 - conduct clustering for the representations with the same target token
 - train the compact network $(f_{\alpha}+f_{\theta})$



Solution 1: Reduce Dimension

- 1024-to-64 PCA/SVD is difficult to maintain translation performance
- The best approach is to use compact network trained with triplet distance ranking loss.
- Reducing the dimension of the contextualized representation can significantly improve inference speed (1.5x faster than adaptive KNN-MT).

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022.

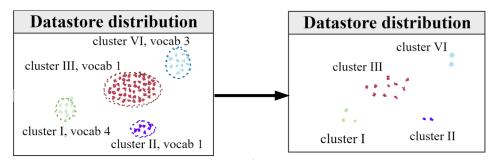
Model	BLEU	
 NMT	38.35	
adaptive kNN-MT	47.20	J
+feature-wise PCA	46.84	
+weight-wise SVD	45.96	J
[DY] CKMT+DR	37.10	
[DY] CKMT+WP	46.41	
[DY] CKMT+NCE	46.58	
[DY] CKMT+NCE+DR	37.33	
[DY] CKMT+NCE+WP	46.42	
[DY] CKMT+NCE+CL	47.48	
ST CKMT+NCE+CL	47.94	
[ST] CKMT+NCE+CL+DR	47.64	
[ST] CKMT+NCE+CL+WP	46.88	

1	Model	BLEU	Sentences/s	Tokens/s
adaptiv	ve kNN-MT	31.36	58	660
<u>k=16</u>	CKMT*	31.64	74	849
K -10	PCKMT*	31.58	85	963
k=8	CKMT*	31.43	78	890
K=0	PCKMT*	31.72	91	1024
1	CKMT*	31.28	79	899
k=4	PCKMT*	31.23	85	968

- reduce the number of datastore entries (Martins et al., 2022; Wang et al., 2022; Zhu et al., 2022)
- narrow down search space with prior hypothesis (Meng et al., 2022; Wang et al., 2022)

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022. Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022. What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022 Fast Nearest Neighbor Machine Translation. Meng et al. ACL'2022. Faster Nearest Neighbor Machine Translation. Wang et al. arXiv'2022. 48

- reduce the number of datastore entries
 - merge datastore entries that share the same value while their keys are close to each other (Martins et al., 2022)
 - cluster-based datastore pruning (Wang et al., 2022)



• prune datastore entries with local correctness (Zhu et al., 2022)

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022. Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022. What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022 49

- Merging datastore entries (Martins et al. 2022) prunes 40% datastore entries with the cost of 1.4 BLEU in average.
- Cluster-based method (Wang et al. 2022) prunes 10% datastore entries with the cost of 0.9 BLEU in average.

	Medical	Law	IT	Koran	Average	Model			main		Avg.
kNN-MT	54.47	61.23	45.96	21.02	45.67					Medical	
	01117	01.20	10.00	21.02						56.92	
k = 1	53.60	60.23	45.03	20.81	44.92	CKMT*+SP	43.01	19.50	59.40	52.16	43.52
k=2	52.95	59.40	44.76	20.12	44.31	CKMT*+LTP	46.78	19.28	61.96	55.21	45.81
k = 5	51.63	57.55	44.07	19.29	43.14	CKMT*+HTP	45.95	20.10	59.51	55.14	45.18
	the num	her o	f neial	abors		CKMT*+RP	46.38	19.99	61.96	55.45	45.85
						CKMT*+Ours	47.06	20.01	61.72	55.33	46.03
	used fo	r gree	a mer	ging			•				·

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022. Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022.

- Merging datastore entries (Martins et al. 2022) prunes 40% datastore entries with the cost of 1.4 BLEU in average.
- Cluster-based method (Wang et al. 2022) prunes 10% datastore entries with the cost of 0.9 BLEU in average.
- Pruning datastore entries with local correctness (Zhu et al. 2022) prunes 45% datastore entries with the cost of 0.1 BLEU in average.

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022. Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022. What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022

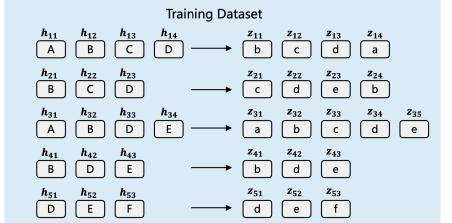
• On top of dimension reduction, pruning datastore can bring further speed improvement.

I	Model	BLEU	Sentences/s	Tokens/s	Datastore size	Pruning rate
adaptiv	ve kNN-MT	31.36	58	660	154M	0%
k=16	CKMT*	31.64	74	849	154M	0%
K=10	PCKMT*	31.58	85	963	123M	20%
10	CKMT*	31.43	78	890	154M	0%
k=8	PCKMT*	31.72	91	1024	108M	30%
k=4	CKMT*	31.28	79	899	154M	0%
К=4	PCKMT*	31.23	85	968	138M	10%

- narrow down search space with prior hypothesis
 - Source sentence may help narrow down search space (Meng et al., 2022; Wang et al., 2022).
- a toy dataset for illustration
 - training set

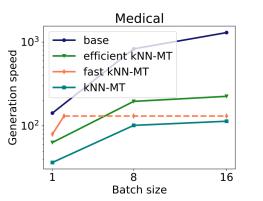
 $(x^{(1)}, y^{(1)}) = (\{A, B, C, D\}, \{b, c, d, a\})$ $(x^{(2)}, y^{(2)}) = (\{B, C, D\}, \{c, d, e, b\})$ $(x^{(3)}, y^{(3)}) = (\{A, B, D, E\}, \{a, b, c, d, e\})$ $(x^{(4)}, y^{(4)}) = (\{B, D, E\}, \{b, d, e\})$ $(x^{(5)}, y^{(5)}) = (\{D, E, F\}, \{d, e, f\})$

• test example: {*B*, *C*, *E*}



Fast Nearest Neighbor Machine Translation. Meng et al. ACL'2022. Faster Nearest Neighbor Machine Translation. Wang et al. arXiv'2022.

- Narrowing down search space with prior hypothesis can improve inference speed.
- Translation performance declines on Medical, Law, IT and Subtitles.



Model	Medical	Law	IT	Koran	Subtitles	Avg.
Aharoni and Goldberg 1 base MT +kNN-MT +fast kNN-MT	$54.839.954.4_{(+14.5)}53.6_{(+13.7)}$	$58.845.761.8_{(+16.1)}56.0_{(+10.3)}$	$\begin{array}{c} 43.5\\ 38.0\\ 45.8_{(+7.8)}\\ 45.5_{(+7.5)}\end{array}$	$21.8 \\ 16.3 \\ 19.4_{(+3.1)} \\ 21.2_{(+4.9)}$	$27.429.231.7_{(+2.5)}30.5_{(+1.3)}$	$\begin{array}{c} 41.3\\ 33.8\\ 42.6_{(+8.8)}\\ 41.4_{(+7.6)}\end{array}$

Fast Nearest Neighbor Machine Translation. Meng et al. ACL'2022. Faster Nearest Neighbor Machine Translation. Wang et al. arXiv'2022.

- avoid querying datastore at each decoding step
 - adaptive retrieval with a learned neural network (Martins et al., 2022)
 - cache previous retrieval distributions as candidates (Martins et al., 2022)
 - use empirical schedule for retrieval (Martins et al., 2022)

- adaptive retrieval with a learned neural network
 - use a simple MLP to predict interpolation weight λ
 - only performs retrieval when λ is greater than a threshold
- cache previous retrieval distributions as candidates
 - If current decoder's representation is close to the keys on cache, the model retrieve the KNN distribution from the cache:

$$\mathcal{C} = \{ (\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}_{< t}), p_{kNN}(y_t | \boldsymbol{y}_{< t}, \boldsymbol{x})) \forall y_t \in \boldsymbol{y} \, | \, \boldsymbol{y} \in \mathcal{B} \}$$

• Otherwise, the model search the datastore.

- using a datastore with consecutive tokens (chunks) as values
 - retrieve chunks of tokens at retrieval steps
 - reuse previously retrieved results at non-retrieval steps
- retrieval steps schedule
 - empirically, it is beneficial to perform retrieval steps more frequently at the beginning of the sentence
 - interval between the current retrieval step and the next one

$$i(t) = \min\left(i_{\max}, i_{\min} \times 2^{rac{\frac{1}{2}i_{\max}t}{|\boldsymbol{x}|}}
ight)$$

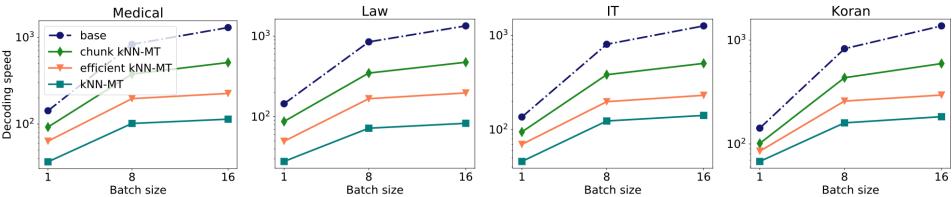
Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv'2022.

Solution 3: Reduce Retrieval Frequency

- Deducine netwievel frequency			acche bezed	BLEU							
• K	 Reducing retrieval frequency a 		cache-dasea	Medical	Law	IT	Koran	Average			
COUS	es tra	nsla	tion	nerf	ormance	Baselines					
Cuus		JIIJIU		peri	ormance	Dube IIII	40.01	45.64	37.91	16.35	34.98
الم م الم		-				knn-mt	54.47	61.23	45.96	21.02	45.67
aeci	ine on	τα	дет с	ioma	ins.	Fast kNN-MT	52.90	55.71	44.73	21.29	43.66
						Efficient kNN-MT					
						cache	53.30	59.12	45.39	20.67	44.62
					(PCA + cache	53.58	58.57	46.29	20.67	44.78
						PCA + pruning	53.23	60.38	45.16	20.52	44.82
						PCA + cache + pruning	51.90	57.82	44.44	20.11	43.57
MLP-bo	and					chunk-based	BLEU				
MLP-DC	ISEU					Churik-Duseu	Medical	Law	IT	Koran	Average
	Medical	Law	IT	Koran	Average	Parametric models					
						Base MT	40.01	45.64	37.91	16.35	34.98
kNN-MT	54.47	61.23	45.96	21.02	45.67	Fine-tuned	50.47	56.56	43.82	21.54	43.10
$\alpha = 0.25$	45.52	49.91	37.97	16.36	37.44	Semi-parametric models					
$\alpha = 0.5$	52.84	59.36	38.58	18.08	42.22	kNN-MT	54.47	61.23	45.96	21.02	45.67
$\alpha = 0.0$ $\alpha = 0.75$	53.90	60.87	43.05	19.91	44.43	Efficient <i>k</i> NN-MT	51.90	57.82	44.44	20.11	43.57
	17.90	00.07	43.03	17.71	44.4.3	Chunk-based kNN-MT	53.16	59.65	44.18	19.33	44.08

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022.

- Reducing retrieval frequency can improve inference speed.
- The fastest approach is chunk-based KNN-MT (4X faster than vanilla KNN-MT), but is still slower than Base MT when batch size is larae.



Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv'2022.

- Accelerating the inference speed of kNN-MT?
 - improve the inference speed of kNN-MT in different ways, but trade off translation performance
 - still a large speed gap between optimized kNN-MT and base MT when the batch size is large (a more practical setting)

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL'2022. Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP'2022. What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022 Fast Nearest Neighbor Machine Translation. Meng et al. ACL'2022. Faster Nearest Neighbor Machine Translation. Wang et al. arXiv'2022. Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv'2022.

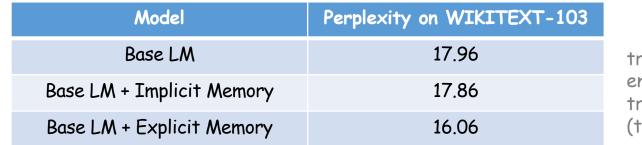
Part 3: Dive into kNN-MT: Interpretability

62

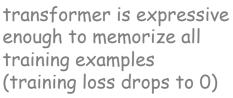
- Why is retrieval useful for neural model?
 - Khandelwal et al. ICLR'2020
 - Khandelwal et al. ICLR'2021
 - Jiang et al. EMNLP'2021
 - Wang et al. COLING'2022
- What knowledge does the neural model need?
 - Jiang et al. EMNLP'2022
 - Zhu et al. arXiv'2022

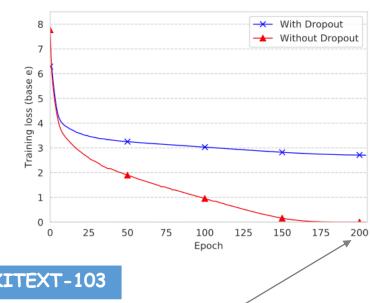
Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR'2020 Nearest Neighbor Machine Translation. Khandelwal et al. ICLR'2021 Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP'2021 Learning Decoupled Retrieval Representation for Nearest Neighbour Neural Machine Translation. Wang et al. COLING'2022. Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP'2022. What Knowledge Is Needed? Towards Explainable Memory for KNN-MT Domain Adaptation. Zhu et al. arXiv'2022

- explicit vs implicit memory
 - Retrieval-based KNN-LM memorized training data while improving generalization.



Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR'2020

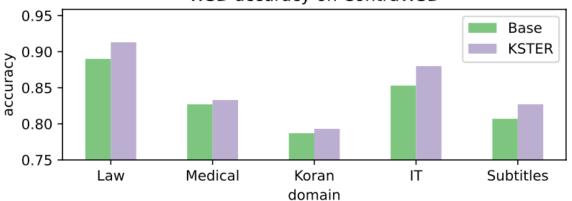




• Similar context has similar distribution over the next word.

Training Set Translation Context (source and	l target)	Training Set Target	Context Probability	
terpräsidenten Recep Tayyip cep Tay	ismatic prime minister, Re- yip Erdoğan, having won onsecutive elections, has e to exert his authority over	military	0.132	retrieval can
Ermordung des gemäßigten Pre- sination mierministers Inukai Tsuyoshi ter Inuka	able case was the assas- of moderate Prime Minis- ai Tsuyoshi in 1932, which the end of any real civilian of the	military	0.130	predict target token correctly

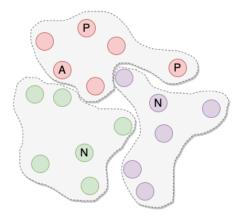
- Retrieval improve the predictions of morphologically complex word types, e.g. verbs, adverbs and nouns.
- Retrieved examples contains useful context information which helps word sense disambiguation (WSD).



WSD accuracy on ContraWSD

- Similar decoder output representation means similar context?
- Decoupling the representations of translation task and retrieval task would be better (Wang et al., 2022).
 - · Learn retrieval representation via contrastive learning

Method	Medical	Law	IT	Koran	Subtitle	Avg.	
Baseline (WMT19 winner, Ng et al. (2019))	39.91	45.71	37.98	16.3	29.21	33.82	
kNN-MT (Khandelwal et al., 2021)	54.35	61.78	45.82	19.45	31.73 [†]	42.63	
kNN-MT (our implementation)	54.41	61.01	45.20	21.07	29.67	42.27	
train by out-domain data							
Clknn	56.37	61.54	46.50	21.52	30.81	43.35	
$CLKNN + \lambda^*$	56.52	61.63	46.68	21.60	30.86	43.46	
train by in-domain data							
Clknn	55.86	61.92	47.77	21.46	31.02	43.61	
C LKNN + λ^*	55.87	62.01	47.84	21.81	31.05	43.72	



Learning Decoupled Retrieval Representation for Nearest Neighbour Neural Machine Translation. Wang et al. COLING'2022.66

What Knowledge Does the Neural Model Need?

- The importance of retrieved knowledge is related with the capability of the NMT, e.g. prediction confidence (Jiang et al., 2022).
 - dynamically decide whether retrieved knowledge is needed

$$\lambda_t = \frac{\exp(s_{k\text{NN}})}{\exp(s_{k\text{NN}}) + \exp(s_{\text{NMT}})} \qquad s_{\text{NMT}} = \mathbf{W}_6[p_{\text{NMT}}(v_1|\hat{h}_t), ..., p_{\text{NMT}}(v_K|\hat{h}_t); \\ p_{\text{NMT}}(v_1|h_1), ..., p_{\text{NMT}}(v_K|h_K); \\ p_{\text{NMT}}^{top1}, ..., p_{\text{NMT}}^{topK}],$$

Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP'2022.

What Knowledge Does the Neural Model Need?

- The relationship between NMT model and symbolic datastore is unclear.
- The datastore usually saves all target language token occurrences in the parallel corpus, which is large and possibly redundant.

- Intuitively, the pre-trained NMT model only needs knowledge that remedies its weakness. (Zhu et al., 2022)
- A novel notion called "local correctness" (LAC), which consists of entry correctness and neighborhood correctness.

• Entry Correctness

- Entry correctness describes whether the NMT model could make correct translation for a specific datastore entry.
- It can be evaluated by comparing target token and prediction token:

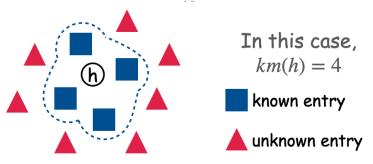
$$(h(\mathbf{x}, \mathbf{y}_{< t}), y_t)$$
 is
$$\begin{cases} \text{known,} & \text{if } \hat{y}_t = y_t \\ \text{unknown,} & \text{o.w.} \end{cases}$$

What Knowledge Is Needed? Towards Explainable Memory for KNN-MT Domain Adaptation. Zhu et al. arXiv'2022

Neighborhood Correctness

- Neighborhood correctness evaluates the NMT model's prediction on a neighborhood in the representation space.
- Knowledge margin is proposed as the metric.

 $rg\max_k{(h^j,y^j)}$ is known, $orall{(h^j,y^j)} \in \mathcal{N}_k(h)$



What Knowledge Is Needed? Towards Explainable Memory for KNN-MT Domain Adaptation. Zhu et al. arXiv'2022

• Understand the role of different datastore entries.

 Helpful • Entries with small km:
 NMT model tends to fail when context are similar but different.

Less Helpful

• Entries with large km:

NMT model generalizes well on these entries.

Algorithm 1 Datastore Prunir	ng by PLAC
Input: datastore \mathcal{D} , the <i>knowledge</i>	margin threshold k_p , the
pruning ratio <i>r</i>	
Output: pruned datastore \mathcal{D}	
1: $candidates \leftarrow \emptyset$	⊳ step 1: collect
2: for each entry (h, y) in \mathcal{D} do	_
3: if $km(h) \ge k_p$ then:	
4: $candidates \leftarrow candidates$	$lates \cup (h,y)$
5: end if	
6: end for	
7: repeat	⊳ step 2: drop
8: randomly select entry (h, y)) from candidates
9: remove (h, y) from \mathcal{D}	, ,
10: until pruning ratio r is satisfied	1
11: return \mathcal{D}	

- Pruning with local correctness (PLAC) cuts off up to 45% datastore entries while achieving comparable performance.
 - previous pruning method (40% -1.4 BLEU, 10% -0.9 BLEU)

	(Ratio	OPUS-Me BLEU↑	dical COMET↑	Ratio	OPUS-L BLEU↑	.aw COMET↑	Ratio	OPUS- BLEU↑	IT COMET↑	Ratio	OPUS-Ko BLEU†	oran COMET↑
Base Finetune	-	39.73 58.09	0.4665 0.5725	-	45.68 62.67	0.5761 0.6849		37.94 49.08	0.3862 0.6343	-	16.37 22.40	-0.0097 0.0551
Adaptive kNN	0%	57.98	0.5725	0%	63.53	0.7033	0%	48.39	0.5694	0%	20.67	0.0364
Random	45%	54.08*	0.5677*	45%	58.69*	0.6690*	40%	45.54*	0.5314*	25%	20.36	0.0434
Merge Cluster	45% 45%	54.65* 53.31*	0.5523* 0.5689*	45% 45%	60.60* 58.68*	0.6776* 0.6779*	40% 40%	45.83* 45.80*	0.5334* 0.5788	25% 25%	20.25* 20.04*	0.0365 0.0410
Known All Known	45% 73%	56.44* 42.73*	0.5691* 0.4926*	45% 66%	61.61* 51.90*	0.6885* 0.6200*	40% 69%	45.93* 40.93*	0.5563 0.4604*	25% 56%	20.35 17.76*	0.0338 0.0008*
PLAC (ours)	45%	57.66	0.5773	45%	63.22	0.6953*	40%	48.22	0.5560	25%	20.96	0.0442

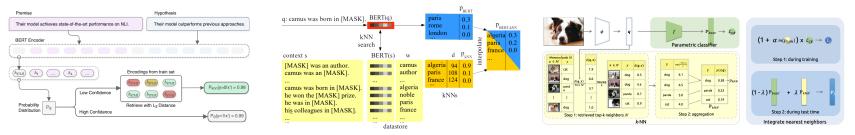
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022_

- Why is retrieval is useful for neural model?
 - memorize various patterns explicitly
 - improve generalization ability of the MT system
- Which knowledge does the neural model need?
 - NMT model only needs knowledge that remedies its weakness
 - local correctness is good angle to interpret this issue

Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR'2020 Nearest Neighbor Machine Translation. Khandelwal et al. ICLR'2021 Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP'2021 Learning Decoupled Retrieval Representation for Nearest Neighbor Neural Machine Translation. Wang et al. COLING'2022 What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv'2022

Part 4: Applications

- It is easy to fill other task-specific knowledge into the datastore
- The idea of kNN-LM/MT is applicable to other tasks
 - Natural Language Inference (Rajani et al., 2020)
 - Question Answering (Kassner and Schuetze, 2020)
 - Visual Classification (Jia et al., 2021)
 - Multi-Label Text Classification (Su et al., 2022)
 - Named Entity Recognition (Wang et al., 2022)



kNN-box is an open-source toolkit to build kNN-MT models

R NJUNLP / knn-box Public R	Pins 👻 💿 Unwatch 6 💌	양 Fork 2 →	★ Starred 22
-----------------------------	----------------------	------------	--------------

- Features
 - 🚳 easy-to-use: a few lines of code to deploy a kNN-MT model
 - 🔭 research-oriented: provide implementations of various papers
 - 🔯 extensible: easy to develop new kNN-MT models with our toolkit
 - 📊 visualized: the whole translation process of the kNN-MT can be visualized

https://github.com/NJUNLP/knn-box

• We unify different kNN-MT variants into a single framework, albeit they manipulate datastore in different ways.

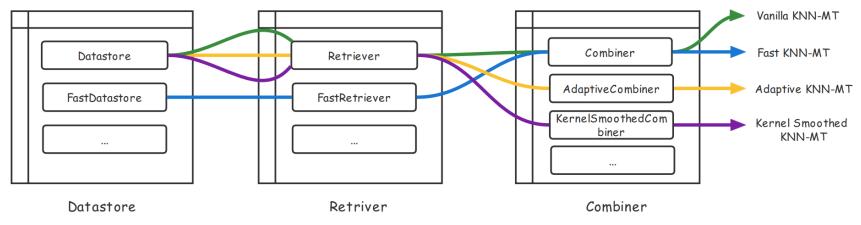
Datastore save translation knowledge in key-values pairs

retrieve translation knowledge from the datastore

Combiner make final prediction based on retrieval results and NMT model

Build kNN models like Playing LEGO

- Users can easily develop different kNN-MT models by customizing three modules
- We also provide example implementations of various popular kNN-MT models and push-button scripts to run them



https://github.com/NJUNLP/knn-box

kNN-box Provides an Interactive Interface

• User can type in the sentence and get translation generated by both NMT and KNN-MT system.

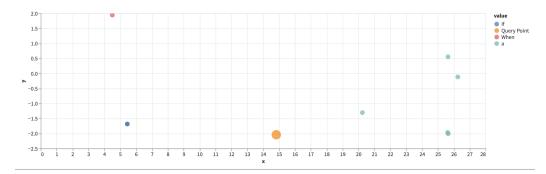
Choose translation ⑦	Paste the source language text below (max 500 words)
ZH-EN[laws] -	法人以其全部财产独立承担民事责任。
#К 💿	
8 – +	
# Lambda ⑦	
0.00 1.00	
# Temperature ⑦	<i>h</i>
0.01 100.00	'+ Get me the translation!

kNN-box Provides an Interactive Interface

• Display each step's translation candidates and kNN results

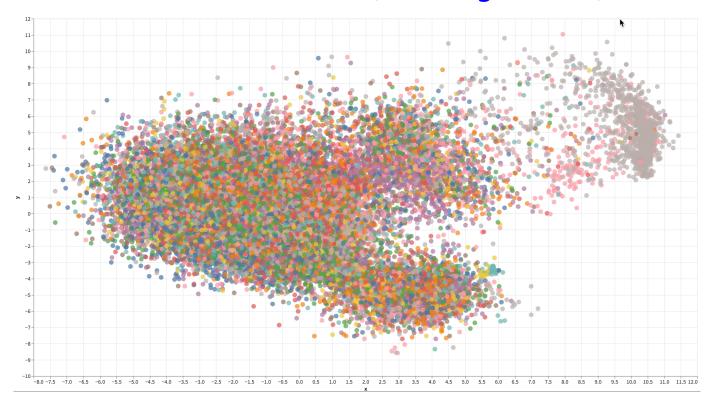
	NMT candidates	NMT probability	kNN-MT candidates	kNN-MT probability
0	the	0.499	а	0.710
1	legal	0.087	the	0.150
2	law	0.065	legal	0.026
3	а	0.056	law	0.019
4	lawyers	0.016	If	0.005
5	jur@@	0.015	lawyers	0.005
6	in	0.012	jur@@	0.005
7	with	0.008	in	0.004

a legal person bears civil liability independently with all its property . </s>



Datastore Visualization

• Visualize datastore entries (of a single token)



- Symbolic system is a good compensation for neural system.
- kNN-MT: a novel neuro-symbolic MT framework, which can also be transferred to other NLP tasks.
- recent advances has made kNN-MT
 - effective in more settings
 - has faster inference speed
 - more explainable than a black box

- Interesting problems to be explored:
 - Can we build a symbolic system that is tiny but effective?
 - Can we use neural vectors as values to construct the datastore?
 - Can we explain the inner-working of the neural system with the help of the symbolic system?

	symbolic value	neural value
symbolic key	exact matching	?
neural key	neural retrieval	?

Reference

- (only those not shown in page)
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. NIPS2017
- Makoto Nagao. A framework of a mechanical translation between Japanese and English by analogy principle. In A. Elithorn and R. Banerji. Artificial and Human Intelligence. Elsevier Science Publishers. 1984
- Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor O. K. Li. 2018. Search engine guided neural machine translation. AAAI2018
- Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig, and Satoshi Nakamura. 2018. Guiding neural machine translation with retrieved translation pieces. NAACL2018

- Ankur Bapna and Orhan Firat. 2019. Non-parametric adaptation for neural machine translation. NAACL2019
- Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Nearest neighbor machine translation. ICLR2020
- Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. ACL2016.
- Explaining and Improving Model Behavior with k Nearest Neighbor Representations. Rajani et al. ArXiv'2020
- BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA. Kassner and Schuetze. EMNLP'2020
- Rethinking Nearest Neighbors for Visual Classification. Jia et al. ArXiv'2021

- Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification. Su et al. ACL'2022
- kNN-NER: Named Entity Recognition with Nearest Neighbor Search. Wang et al. ArXiv'2022

Thanks for Watching !