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Part 1: Introduction



Development of Machine Translation
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Statistical Machine 
Translation (SMT)
Brown et al., 1993
Koehn et al., 2003
Chiang et al., 2005

Proposals for Machine 
Translation (MT)
Weaver, 1949

Neural Machine 
Translation (NMT)
Cho et al., 2014
Bahdanau et al., 2015

Rule-based
Machine Translation
since 1950s

Example-based 
Machine Translation 
Nagao, 1980s

Deep Learning Era
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• In statistical machine translation, the knowledge are
extracted as symbolic rules.

Ankara is angry with the West for what it considers a weak response to 
the attempted takeover.
Add to that its long-standing grudge at the snail's pace of talks to join 
the EU and step in Mr Putin - who is keen to capitalise on the chill and 
chip away at Turkey's ties with the West.
The Russian leader certainly won bonus points with Ankara for calling in 
support of the elected authorities after the attempted coup.
Mind you, that's a given for Moscow which has its own deep-seated 
fear of regime change.
So the summit at this glitzy, seaside palace allowed Russia and Turkey 
to present what one analyst described to me as an "alliance of misfits": 
two countries that feel rejected and mistreated by the West, joining 
forces.
Still, despite the public display of reconciliation, the two still have major 
differences.
The key one is Syria, where Moscow has recently been casting itself as 
peacemaker but where Russia and Turkey back opposite sides.
It could be telling that after almost three hours of initial talks, the two 
presidents told a press conference that they hadn't even touched on 
the topic.
Turkey's president deliberately avoided answering a question on their 
differences, while Mr Putin chose to underline them.
There is no clear consensus on where they can seek common ground 
on Syria.
But after months of open hostility - and given the potential for utter 
disaster when Nato member Turkey shot down that Russian fighter jet -
it is surely better that the two leaders are at least talking again.
Royal Bank of Scotland to disappear for customers outside Scotland

安卡拉对于西方世界对接管意图的微弱反应感到愤
怒。
此外，安卡拉对于加入欧盟谈判的缓慢进展及普京
的插手长期感到不满，普京热衷于利用政治寒意以
及削弱土耳其与西方世界的关系。
由于在政变失败后拥护当选当局，俄罗斯领导人必
将获得安卡拉的加分。
注意，这对于一直对政权更迭怀抱根深蒂固恐惧的
莫斯科来说是一种馈赠。
因此，在这个金碧辉煌的海边宫殿所举行的会面使
俄罗斯与土耳其两个被西方世界拒绝与虐待的国家
结成盟友，一位分析师将其描述为“格格不入联
盟”。
然而，尽管公开和解，但双方仍存在重大分歧。
叙利亚是关键因素之一。莫斯科近日在叙利亚扮演
和事佬的角色，而俄罗斯与土耳其却支持相反派别。
可以预见到的是，在经过近三个小时的初步谈话后，
两位总统在发布会上表示，尚未谈及那个话题。
土耳其总统刻意回避关于双方分歧的问题，而普京
则予以强调。
双方就如何在叙利亚问题上求同存异未达成明确共
识。
在北大西洋公约组织成员国土耳其击落俄战机所带
来的数月公开敌对及引发大型灾难的可能下，两国
领导人再次重启对话肯定是件好事。
苏格兰皇家银行将不再为苏格兰以外客户服务

Parallel Data (En-Chs)
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(a) 双语句对、句法树及词对齐

30–>30

来–>over

多年–>the, last, years

友好–>friendly

(b) 单词翻译规则示例

30 多年–>the last 30 years

30 多年 来–>over the last 30 years

友好 合作–>friendly cooperation

的 友好–>friendly

(c) 短语翻译规则示例

30–>30

X 多年–>the last X years

X 的 X–>X2 X1

友好 合作–>friendly cooperation

(d) 层次翻译规则示例

QP(CD 30)(CD 多年)(LC 来)–>the last 30 years

友好 合作–>NP(JJ friendly)(NN cooperation)

QP(CD 30)(CD 多年)(LC 来)–>NP(DT the)(JJ last)(CD 30)(NNS years)

(e) 句法翻译规则示例

图 1.3: 不同翻译模型的翻译规则示例
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Translation Rules of Different Types (words,
phrases, hierarchical phrases or syntactic phrases)
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• In statistical machine translation, the knowledge are
extracted as symbolic rules.
• retrieved by an exact
matching of symbols
• suffers greatly from
data sparseness
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phrases, hierarchical phrases or syntactic phrases)
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• In neural machine translation, the knowledge is explicitly
embedded in the parameters of the neural networks.
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support of the elected authorities after the attempted coup.
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两位总统在发布会上表示，尚未谈及那个话题。
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Attention is all you need. Vaswani et al. NIPS2017.

Parallel Data (En-Chs) Transformer 
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• In neural machine translation, the knowledge is explicitly
embedded in the parameters of the neural networks.
• tokens as continuous vectors
• translation by computation
• big models trained on big data

• Neural methods generalize better
than exact matching of symbols.

Attention is all you need. Vaswani et al. NIPS2017.

Transformer 



Problems of the "Neural" Knowledge
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• Learnability
• cannot memorize all translation knowledge in training data, 

especially for low-frequency events
• Interpretability
• cannot give evidence to support its translation decision

• Extensibility
• cannot incorporate new translation knowledge without 

updating neural parameters



Why not Combine the Two Philosophies?
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• Two systems are complementary.

• Combining the two philosophies may bring further
improvement to the whole learning system.

Neural

Symbolic

learns general trends

memorizes specific events
human interpretable
easy to control or modify

better generalization



Retrieval-based Methods
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• Performing translation with the help of a symbolic datastore!
• example based machine translation (Nagao, 1984)
• search engine for sentences (Gu et al., 2018)
• search engine for translation pieces (Zhang et al., 2018)
• n-gram retrieval using dense vectors (Bapna and Firat, 2019)
• token level retrieval using dense vectors (Khandelwal et al., 2021)

matching
criterion:

granularity
of symbols:

sentence piece/
ngram token

exact dense
vector

kNNMT
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Part 2: Basic Approach



The Idea of kNN-MT (previously kNN-LM)
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• Build an extra symbolic datastore
• save linguistic knowledge as key-value pairs
• (key: neural vector, value: symbolic token)

• Leverage the extra datastore
• enable the neural model to retrieve knowledge from datastore
• consider both systems and make final decision

Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR’2020 
Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’2021



kNN-MT
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• Step 1- Build datastore for NMT model
• a single forward pass over a bilingual corpus (e.g., training set) 
• (key: translation context representation, value: target token)

Encoder

Linear

Softm
ax

Decoder

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’2021



kNN-MT
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• Step 2- Query datastore at each inference step
• query with the representation of test translation context to 

retrieve k nearest entries (neighbors)

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021 



kNN-MT
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• Step 3 – Utilize query results
• compute prediction distribution with retrieved entries

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021



kNN-MT
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• Step 3 – Utilize query results
• compute prediction distribution with retrieved entries
• make final prediction

• Interpolate the prediction of NMT and kNN with weight 𝜆

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021



kNN-MT
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• Empirical results show that kNN-MT enjoys advantages
over a simple NMT model in three settings:
• single language pair MT
• multilingual MT
• domain adaptation

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021



Single Language Pair MT
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• NMT model: winner model of WMT’19 German-English 
news translation task

• datastore: 770M tokens of WMT’19 training data

• main results
• 37.59 BLEU -> 39.08 BLEU on newstest2019

• Even very strong translation models can be improved 
with a symbolic datastore of the training set.

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021



Multilingual MT
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• kNN-MT achieves an average improvement of 1.4 BLEU 
across 17 language pairs/directions.

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021



Domain Adaptation
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• kNN-MT presents a new paradigm for domain adaptation,
with performance similar to fine-tuning.

• kNN-MT enables quick adaptation by switching 
datastores.

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021
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Part 3: Dive into kNN-MT



Recent Advances in kNN-MT
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Effectiveness
Efficiency Interpretability

kNN-MT



Effectiveness
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• Although ability demonstrated in previous scenarios,
there are still issues affect the effectiveness.
• stability issues
• resource issues

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL’2021
Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.
Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021
Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI’2022
Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021



Setting 1: MT Domain Adaptation
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• Hyper-parameters affect the stability of kNN-MT!

• The number of nearest neighbors need to be tuned on
the dev set, to avoid the two cases:
• too small – may overfit to closest neighbors 
• too large – may include irrelevant neighbors

• It would be better to dynamically determine k at each 
decoding step.
• If there are more relevant neighbors, use a larger k.
• Otherwise, use a smaller k.



Setting 1: MT Domain Adaptation
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• Evaluating relevance of retrieved knowledge
• distance between query and key

(close neighbors are more relevant)

• consistency among retrieved knowledge
(consistent query results are more relevant)

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL’2021.



Setting 1: MT Domain Adaptation
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• Use a meta-k network to choose k from {0, 1, 2, 4, 
8, ...} dynamically according to relevance of retrieved
knowledge.

• The network could be very simple, because the input is
simple.

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL’2021.

2 layers, d=32, trained with
only 2000 sentences



Setting 1: MT Domain Adaptation

28

• Other hyperparameters also affect the final prediction 
distribution of kNN-MT.
• T as the temperature
• 𝛌 as the weight of combining KNN and NMT

• It would be better to dynamically determine these 
hyperparameters at each decoding step as well.

Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.



Setting 1: MT Domain Adaptation
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• outperform vanilla kNN-MT on different target domains

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL’2021.
Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.

Zheng et al. 2021

Jiang et al. 2022



Setting 2: Multi-domain MT
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• Using a mixed datastore for different domains may also
bring stability issue.
• E.g., Adapted model often performs poorly on general domain.
• For general domain translation, it would be better to discard 

knowledge retrieved from specific-domain datastore.

• The decision should be made according to the domain!
Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021.



Setting 2: Multi-domain MT

31

• Use a learnable kernel to dynamically control the shape 
of kNN distribution.

• Model the bandwidth 𝝈 of kernel function and mixing 
weight 𝝀 with learnable neural networks.

<latexit sha1_base64="WbNj6fLlcirD70cbjv47eMSlw2g="></latexit>

pkNN (yi|x, ŷ<i) /
X

yi=vj

exp(
�d(qi,kj)

T
)

<latexit sha1_base64="53BaCO+vr1zdZ1+hymq0yScaXm8="></latexit>

pe(yi|x, ŷ<i) =

P
yi=vj

K(qi,kj ;�)P
j K(qi,kj ;�)

Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021.
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• outperforms kNN-MT in domain-specific translation
• performs far better in general domain after adaptation

Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021.

7284

Direction Methods Law Medical Koran IT Subtitles Average-specific Average-general (WMT14)

EN-DE

Base 33.36 30.54 10.16 22.99 20.65 23.54 27.20
Finetuning 49.07 47.10 25.98 36.28 26.00 36.89 14.17
kNN-MT 51.88 47.02 18.51 29.12 22.46 33.80 8.32
KSTER 53.63 49.18 19.10 30.28 22.54 34.95 25.63

DE-EN

Base 36.80 33.36 11.24 29.21 23.13 26.75 31.49
Finetuning 55.19 51.35 22.87 41.88 28.33 39.92 17.82
kNN-MT 57.40 50.92 15.74 34.92 25.38 36.87 13.18
KSTER 59.41 53.40 16.97 35.74 25.94 38.29 30.23

Table 3: Test set BLEU scores of DAMT. Laplacian kernel is used in KSTER. Average-specific and average-
general domain represent the averaged performance of adapted models in domain-specific translation and general
domain translation. KSTER outperforms kNN-MT for 1.2 and 1.4 BLEU scores on average in EN-DE and DE-EN
directions. Significance test by paired bootstrap resampling shows that KSTER outperforms kNN-MT significantly
in all domains except for Subtitles domain in EN-DE translation and IT domain in DE-EN translation.

databases and queries for retrieval. The translation
performance is evaluated with detokenized BLEU
scores (Papineni et al., 2002), computed by Sacre-
BLEU (Post, 2018) 3.

We build a FAISS (Johnson et al., 2017) index
for nearest neighbour search. We employ inverted
file and product quantization to accelerate retrieval
in large scale databases. The keys of examples are
stored in the fp16 format to reduce the memory
demand. We set k = 16 to keep a balance between
translation quality and inference speed.

We train the base model for 200k steps. The
best 5 checkpoints are averaged to obtain the fi-
nal model. We train KSTER for 30k steps. For
the training procedures of all models, each batch
contains 32,768 tokens approximately. The models
are optimized by Adam optimizer (Kingma and Ba,
2015) with learning rates set to 0.0002.

KSTER introduced 526k trainable parameters,
which is 0.85% of the base model. We implement
all the models based on JoeyNMT (Kreutzer et al.,
2019) 4.

4.2 Domain Adaptation for Machine
Translation

We build individual database for each specific do-
main with in-domain training data in DAMT. The
sizes of databases are shown in Table 2.

Baselines We compare the proposed method
with the following baselines.

• Base base model trained on general-domain
data.

• Finetuning base model trained on general
domain dataset and then finetuned with in-
domain data for each specific domain individ-
ually.

3https://github.com/mjpost/sacrebleu
4https://github.com/joeynmt/joeynmt

Method EN-DE DE-EN
kNN-MT 33.80 36.87

+ 10% source noise 31.26 (-2.54) /
+ 10% target noise / 33.43 (-3.44)

KSTER 34.78 38.17
+ 10% source noise 32.89 (-1.89) /
+ 10% target noise / 35.67 (-2.50)

Table 4: The averaged BLEU scores over 5 specific do-
mains in DAMT with noisy database. KSTER is more
robust than kNN-MT when the quality of database is
not good.

• kNN-MT kNN-MT with in-domain database
individually, where the hyper-parameters are
tuned on development set of each domain.

The KSTER model is trained for each specific
domain individually for fair comparison .

Main results The DAMT experiment results are
shown in Table 3. For domain-specific transla-
tion, KSTER outperforms kNN-MT for 1.2 and
1.4 BLEU scores on average in EN-DE and DE-EN
translation respectively. Finetuning achieves best
domain-specific performance on average. However,
the performance of finetuned models on general do-
main drops significantly due to the catastrophic
forgetting problem. The even worse general do-
main performance of kNN-MT indicates that it
overfits to the retrieved examples severely. KSTER
performs far better than finetuning and kNN-MT in
general domain, which shows strong generalization
ability. We notice that KSTER with Laplacian ker-
nel performs slightly better than Gaussian kernel,
since KSTER with Gaussian kernel tends to ignore
the long-tailed retrieved examples.

Robustness test The performance of MT model
with non-parametric retrieval is influenced by the
size and quality of database. Khandelwal et al.
(2021) have studied how translation performance



Setting 2: Multi-domain MT
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• After a joint training on multiple domains, KSTER
outperforms kNN-MT with a mixed datastore.

Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021.
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Direction Methods General (WMT14) Law Medical Koran IT Subtitles Average-specific

EN-DE

Base 27.20 33.36 30.54 10.16 22.99 20.65 23.54
Joint-training 27.25 45.02 44.52 15.43 34.48 25.16 32.92
kNN-MT 24.72 51.24 46.54 16.29 29.55 21.80 33.08
KSTER 27.69 53.04 49.23 15.94 31.82 22.63 34.53

DE-EN

Base 31.49 36.80 33.36 11.24 29.21 23.13 26.75
Joint-training 31.62 50.95 47.48 18.13 39.57 27.73 36.77
kNN-MT 25.87 57.38 50.83 14.57 37.56 22.86 36.64
KSTER 31.94 58.64 52.79 15.24 36.90 25.15 37.74

Table 5: Test set BLEU scores of multi-domain machine translation. Average-specific is the averaged performance
in 5 specific domains. For general domain sentence translation, KSTER outperforms kNN-MT for 3 and 6 BLEU
scores in EN-DE and DE-EN direction respectively. For domain-specific translation, KSTER outperforms kNN-
MT for 1.5 and 1.1 BLEU scores in EN-DE and DE-EN direction. Significance test by paired bootstrap (Koehn,
2004) resampling shows that KSTER outperforms kNN-MT significantly in all domains except for Koran domain
in EN-DE translation and IT domain in DE-EN translation.

of kNN-MT changes with the size of database. In
this work, we study the performance change of
kNN-MT and KSTER with low-quality database.
Specifically, we test the robustness of these models
in DAMT when the database is noisy.

We add token-level noise to the English sen-
tences in parallel training data by EDA (Wei and
Zou, 2019) 5. For each word in a sentence, it is
modified with a probability of 0.1. The candidate
modifications contain synonym replacement, ran-
dom insertion, random swap and random deletion
with equal probability. Then we use the noisy train-
ing data to construct the noisy database.

We study the effects of source side noise and
target side noise on translation performance. The
experiment results are presented in Table 4. Target
side noise has more negative effect to translation
performance than source side noise. The BLEU
scores of KSTER drop less apparently in all set-
tings, which indicates that the proposed method is
more robust with low-quality database.

4.3 Multi-Domain Machine Translation

In MDMT, since there is no domain label available
in test time, examples from all domains are trans-
lated with one model. We build a mixed database
with training data of general domain and 5 specific
domains, which is used in all MDMT experiments.
The mixed database for EN-DE translation and DE-
EN translation contains 172M and 167M key-value
pairs respectively.

Baselines We compare the proposed method
with the following baselines.

5We do not experiment with adding noise to the German
side, since German WordNet is not available for us, which is
necessary for synonym replacement

Figure 4: General domain and averaged domain-
specific performance of kNN-MT with different hyper-
parameter selections in DE-EN direction, together with
the performance of Base and KSTER with Gaussian
kernel.

• Base base model trained on general domain
dataset.

• Joint-training base model trained on the mix-
ture of general domain dataset and 5 specific
domain datasets.

• kNN-MT kNN-MT with mixed database.
The hyper-parameters are selected that
achieve highest averaged development set
BLEU scores over general domain and 5 spe-
cific domains.

We sample 500k training examples from general
domain training set, which are then mixed with all
5 specific domain training examples for KSTER
training.

Main results The experiment results of MDMT
are shown in Table 5. For general domain sen-
tence translation, KSTER outperforms kNN-MT
for 3 and 6 BLEU scores in EN-DE and DE-EN
direction respectively. For domain-specific trans-
lation, KSTER outperforms kNN-MT for 1.5 and
1.1 BLEU scores in EN-DE and DE-EN direction.



Setting 3: Human-in-the-Loop MT
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• Interactive Machine Translation (IMT)
• The human translators revise the machine-generated translations.
• The corrected translations are used to improve the NMT system.

• IMT requires Online learning
• kNN fits well, because it learns
without changing the original model.
• However, the datastore is
gradually increasing, affecting the
effectiveness of kNNMT.

Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI’2022.



Setting 3: Human-in-the-Loop MT

35

• Dynamically choose 𝝀 by querying a datastore that 
saves policy about whether retrieved knowledge can be 
trust (kNN over kNN).

• Policy Datastore
• key: features of retrieved 
knowledge (distance + distinct values)
• value: gold value of 𝝀

Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI’2022.



Setting 3: Human-in-the-Loop MT
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• achieve consistent improvements on documents with
different lengths

• outperforms kNN-MT and online tuning

Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI’2022.



Setting 4: Unsupervised MT Domain Adaptation
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• Building datastore requires high-quality bilingual data, 
which is not available in unsupervised domain adaptation.
• back-translation is a trivial solution but requires an additional 

reverse translation model

• Context representation from monolingual data may be in
a different representation space, w.r.t. those from
bilingual data.

Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021.



Setting 4: Unsupervised MT Domain Adaptation
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• obtain context representation of (y,y) with an auto-
encoder and align target-side representation of (x,y) 
and (y,y)
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Then we incorporate lightweight adapters into the
encoder part of pre-trained NMT model to make
the decoder’s representation in autoencoder task
close to the corresponding representation in trans-
lation task. In this way, the adapter module implic-
itly learns the semantic mapping from the target
language to source language in feature space to
construct an effective in-domain datastore, while
saving the extra cost of generating synthetic data
via back-translation.

We evaluate the proposed approach on multi-
domain datasets, including IT, Medical, Koran
and Law domains. Experimental results show that
when using target-side monolingual data, our pro-
posed approach obtains 4.9 BLEU improvements
on average and even achieves similar performance
compared with back-translation.

2 Background

In this section, we give a brief introduction to the
domain adaptation of kNN-MT. In general, the
process includes two steps: creating an in-domain
datastore and decoding with retrieval on it.

In-domain Datastore Creation. Given a pre-
trained general domain NMT model and an in-
domain parallel corpus, kNN-MT utilizes the
model to forward pass the corpus to create a data-
store. Formally, for each bilingual sentence pair
in the corpus (x, y) 2 (X ,Y), the NMT model
will generate a context representation h(x, y<t) for
each target-side token yt. Then, the datastore is
constructed by collecting the representations and
corresponding tokens as keys and values respec-
tively:

(K,V) =
[

(x,y)2(X ,Y)

{(h(x, y<t), yt), 8yt 2 y}.

(1)

Decoding with Retrieval. On each decoding
step t, the NMT model first generates a repre-
sentation h(x, ŷ<t) for current translation con-
text, which consists of source-side x and gener-
ated target-side tokens ŷ<t. Then, the represen-
tation is used to query the in-domain datastore
for k nearest neighbors, which can be denoted as
N = {(hi, vi), i 2 {1, 2, ..., k}}. These neighbors
are utilized to form a distribution over the vocab:

pkNN(yt|x, ŷ<t) / (2)
X

(hi,vi)

1yt=vi exp(
�d(hi, h(x, ŷ<t))
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Figure 1: An overview of the proposed method.

where T is the temperature and d(·, ·) indicates the
squared euclidean distance. The final probability
to predict next token y<t is an interpolation of two
distributions with a hyper-parameter �:

p(yt|x, ŷ<t) = � pkNN(yt|x, ŷ<t)

+ (1� �) pNMT(yt|x, ŷ<t),
(3)

where pNMT indicates the general domain NMT pre-
diction and pkNN represents the in-domain retrieval
based prediction.

3 Unsupervised Domain Adaptation with

kNN-MT

Although Khandelwal et al. (2020) has shown
the capability of kNN-MT on domain adapta-
tion, the datastore creation heavily relies on high-
quality in-domain parallel data, which cannot
be always satisfied in practice. As in-domain
monolingual data is usually abundant and easy
to obtain, it is essential to extend the capability
of kNN-MT on unsupervised domain adaptation
that merely uses large amounts of in-domain tar-
get sentences. In this paper, we design a novel
non-parametric Unsupervised Domain Adaptation
framework based on kNN-MT (UDA-kNN) to fully
leverage in-domain target-side monolingual data.

The overview framework of UDA-kNN is illus-
trated in Figure 1. The UDA-kNN starts with the
autoencoder task based on target language y, where
the target-side is simply copied to the source-side
to generate pair (y, y). Based on that, the UDA-
kNN aims to make the decoder’s representation in
autoencoder task close to the ideal representation in
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Then we incorporate lightweight adapters into the
encoder part of pre-trained NMT model to make
the decoder’s representation in autoencoder task
close to the corresponding representation in trans-
lation task. In this way, the adapter module implic-
itly learns the semantic mapping from the target
language to source language in feature space to
construct an effective in-domain datastore, while
saving the extra cost of generating synthetic data
via back-translation.

We evaluate the proposed approach on multi-
domain datasets, including IT, Medical, Koran
and Law domains. Experimental results show that
when using target-side monolingual data, our pro-
posed approach obtains 4.9 BLEU improvements
on average and even achieves similar performance
compared with back-translation.

2 Background

In this section, we give a brief introduction to the
domain adaptation of kNN-MT. In general, the
process includes two steps: creating an in-domain
datastore and decoding with retrieval on it.

In-domain Datastore Creation. Given a pre-
trained general domain NMT model and an in-
domain parallel corpus, kNN-MT utilizes the
model to forward pass the corpus to create a data-
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in the corpus (x, y) 2 (X ,Y), the NMT model
will generate a context representation h(x, y<t) for
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sentation h(x, ŷ<t) for current translation con-
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where T is the temperature and d(·, ·) indicates the
squared euclidean distance. The final probability
to predict next token y<t is an interpolation of two
distributions with a hyper-parameter �:

p(yt|x, ŷ<t) = � pkNN(yt|x, ŷ<t)

+ (1� �) pNMT(yt|x, ŷ<t),
(3)

where pNMT indicates the general domain NMT pre-
diction and pkNN represents the in-domain retrieval
based prediction.

3 Unsupervised Domain Adaptation with

kNN-MT

Although Khandelwal et al. (2020) has shown
the capability of kNN-MT on domain adapta-
tion, the datastore creation heavily relies on high-
quality in-domain parallel data, which cannot
be always satisfied in practice. As in-domain
monolingual data is usually abundant and easy
to obtain, it is essential to extend the capability
of kNN-MT on unsupervised domain adaptation
that merely uses large amounts of in-domain tar-
get sentences. In this paper, we design a novel
non-parametric Unsupervised Domain Adaptation
framework based on kNN-MT (UDA-kNN) to fully
leverage in-domain target-side monolingual data.

The overview framework of UDA-kNN is illus-
trated in Figure 1. The UDA-kNN starts with the
autoencoder task based on target language y, where
the target-side is simply copied to the source-side
to generate pair (y, y). Based on that, the UDA-
kNN aims to make the decoder’s representation in
autoencoder task close to the ideal representation in

Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021.



Setting 4: Unsupervised MT Domain Adaptation
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• train an light-weight adapter to align the
representations 

Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021.



Setting 4: Unsupervised MT Domain Adaptation
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• improved performance with only monolingual data
• achieve competitive results against BT-KNN, but

without extra translation of monolingual data

Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021.



Effectiveness

41

• kNN-MT is less stable because:
• different level of noises retrieved for different tokens,
• different domain requires different usage of the datastore,
• the datastore is changing (e.g., built gradually).

• The datastore may be built without parallel data.

• Different scenarios bring interesting challenges.

Adaptive Nearest Neighbor Machine Translation. Zheng et al. ACL’2021
Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.
Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021
Non-Parametric Online Learning from Human Feedback for Neural Machine Translation. Wang et al. AAAI’2022
Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation. Zheng et al. EMNLP’2021
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Part 3: Dive into kNN-MT:
Efficiency



Can We Accelerate Inference Speed of kNN-MT?

43

• FAISS: a Library for nearest neighbor search
• Product Quantizer (PQ)
• Inverted File (IVF) 
• https://github.com/facebookresearch/faiss

• However, kNN-MT’s decoding speed is still much slower 
than the base MT system.
• x100, batch = 1

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’ 2021
Product quantization for nearest neighbor search. Jégou et al., PAMI’2011
Searching in one billion vectors: re-rank with source coding. Tavenard et al., ICASSP’2011
Billion-scale similarity search with GPUs. Johnson et al., ArXiv’2017

https://github.com/facebookresearch/faiss


Extra Computation Cost in kNN-MT

44

• Neural representations are high-dimensional vectors, so
computing similarities are expensive.

• Symbolic tokens are collected for all the occurrences
of the training data, so the datastore is huge (billions 
of entries).

• The query is performed at each decoding step.



Solution 1: Reduce Dimension
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• reduce the dimension of contextualized representation 
• principal component analysis (PCA) (Martins et al., 2022)
• singular value decomposition (SVD) (Wang et al., 2022)
• cluster-based feature compression (Wang et al., 2022)

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.



Solution 1: Reduce Dimension
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• cluster-based feature compression
• conduct clustering for the representations with the same 

target token
• train the compact network (𝒇𝜶+𝒇𝜽) 

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.



Solution 1: Reduce Dimension
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• 1024-to-64 PCA/SVD is difficult
to maintain translation performance

• The best approach is to use 
compact network trained with 
triplet distance ranking loss.

• Reducing the dimension of the 
contextualized representation can 
significantly improve inference 
speed (1.5x faster than adaptive 
KNN-MT).

Efficient Cluster-Based k-Nearest-Neighbor 
Machine Translation. Wang et al. ACL’2022.



Solution 2: Reduce Search Space
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• reduce the number of datastore entries (Martins et al., 
2022; Wang et al., 2022; Zhu et al., 2022)

• narrow down search space with prior hypothesis (Meng 
et al., 2022; Wang et al., 2022 )

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.
Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022
Fast Nearest Neighbor Machine Translation. Meng et al. ACL’2022.
Faster Nearest Neighbor Machine Translation. Wang et al. arXiv’2022.



Solution 2: Reduce Search Space
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• reduce the number of datastore entries
• merge datastore entries that share the same value while their 

keys are close to each other (Martins et al., 2022)
• cluster-based datastore pruning (Wang et al., 2022)

• prune datastore entries with local correctness (Zhu et al., 2022)

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Solution 2: Reduce Search Space
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• Merging datastore entries (Martins et al. 2022) prunes 40% 
datastore entries with the cost of 1.4 BLEU in average.

• Cluster-based method (Wang et al. 2022) prunes 10% 
datastore entries with the cost of 0.9 BLEU in average.

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.
Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.

the number of neighbors 
used for greed merging



Solution 2: Reduce Search Space
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• Merging datastore entries (Martins et al. 2022) prunes 40% 
datastore entries with the cost of 1.4 BLEU in average.

• Cluster-based method (Wang et al. 2022) prunes 10% 
datastore entries with the cost of 0.9 BLEU in average.

• Pruning datastore entries with local correctness (Zhu et al.
2022) prunes 45% datastore entries with the cost of 0.1 
BLEU in average.

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.
Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Solution 2: Reduce Search Space
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• On top of dimension reduction, pruning datastore can 
bring further speed improvement.

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.



Solution 2: Reduce Search Space
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• narrow down search space with prior hypothesis
• Source sentence may help narrow down search space (Meng et 

al., 2022; Wang et al.,2022).
• a toy dataset for illustration
• training set

• test example: {𝐵, 𝐶, 𝐸}

Fast Nearest Neighbor Machine Translation. Meng et al. ACL’2022.
Faster Nearest Neighbor Machine Translation. Wang et al. arXiv’2022.



Solution 2: Reduce Search Space
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• Narrowing down search space with prior hypothesis can 
improve inference speed.

• Translation performance declines on Medical, Law, IT 
and Subtitles.

Fast Nearest Neighbor Machine Translation. Meng et al. ACL’2022.
Faster Nearest Neighbor Machine Translation. Wang et al. arXiv’2022.



Solution 3: Reduce Retrieval Frequency
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• avoid querying datastore at each decoding step 
• adaptive retrieval with a learned neural network (Martins et al., 

2022)
• cache previous retrieval distributions as candidates (Martins et 

al., 2022)
• use empirical schedule for retrieval (Martins et al., 2022)

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv’2022.



Solution 3: Reduce Retrieval Frequency
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• adaptive retrieval with a learned neural network
• use a simple MLP to predict interpolation weight 𝝀
• only performs retrieval when 𝝀 is greater than a threshold

• cache previous retrieval distributions as candidates
• If current decoder’s representation is close to the keys on 

cache, the model retrieve the KNN distribution from the 
cache:

• Otherwise, the model search the datastore.

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.



• using a datastore with consecutive tokens (chunks) as
values
• retrieve chunks of tokens at retrieval steps
• reuse previously retrieved results at non-retrieval steps

• retrieval steps schedule
• empirically, it is beneficial to perform retrieval steps more 

frequently at the beginning of the sentence
• interval between the current retrieval step and the next one

Solution 3: Reduce Retrieval Frequency

57Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv’2022.



Solution 3: Reduce Retrieval Frequency
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• Reducing retrieval frequency
causes translation performance
decline on target domains.

Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.

cache-based

chunk-basedMLP-based



Solution 3: Reduce Retrieval Frequency
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• Reducing retrieval frequency can improve inference 
speed.

• The fastest approach is chunk-based KNN-MT (4X 
faster than vanilla KNN-MT), but is still slower than 
Base MT when batch size is large.

Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv’2022.



Efficiency
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• Accelerating the inference speed of kNN-MT?
• improve the inference speed of kNN-MT in different ways, 

but trade off translation performance
• still a large speed gap between optimized kNN-MT and base 

MT when the batch size is large (a more practical setting)

Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. Wang et al. ACL’2022.
Efficient Machine Translation Domain Adaptation. Martins et al. WSMNLP’2022.
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022
Fast Nearest Neighbor Machine Translation. Meng et al. ACL’2022.
Faster Nearest Neighbor Machine Translation. Wang et al. arXiv’2022.
Chunk-based Nearest Neighbor Machine Translation. Martins et al. arXiv’2022.



61

Part 3: Dive into kNN-MT:
Interpretability



Interpretability

62

• Why is retrieval useful for neural model?
• Khandelwal et al. ICLR’2020
• Khandelwal et al. ICLR’2021
• Jiang et al. EMNLP’2021
• Wang et al. COLING’2022

• What knowledge does the neural model need?
• Jiang et al. EMNLP’2022
• Zhu et al. arXiv’2022

Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR’2020 
Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’2021
Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021
Learning Decoupled Retrieval Representation for Nearest Neighbour Neural Machine Translation.  Wang et al. COLING’2022.
Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Why Is Retrieval Useful for Neural Model?
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• explicit vs implicit memory
• Retrieval-based KNN-LM
memorized training data while 
improving generalization.

Model Perplexity on WIKITEXT-103

Base LM 17.96

Base LM + Implicit Memory 17.86

Base LM + Explicit Memory 16.06

Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR’2020 

transformer is expressive 
enough to memorize all 
training examples 
(training loss drops to 0)



Why Is Retrieval Useful for Neural Model?
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• Similar context has similar distribution over the next word.

retrieval can 
predict target 
token correctly

Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’2021



Why Is Retrieval Useful for Neural Model?
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• Retrieval improve the predictions of morphologically
complex word types, e.g. verbs, adverbs and nouns.

• Retrieved examples contains useful context information 
which helps word sense disambiguation (WSD).

Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021



Why Is Retrieval Useful for Neural Model?
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• Similar decoder output representation means similar 
context?

• Decoupling the representations of translation task and 
retrieval task would be better (Wang et al., 2022).
• Learn retrieval representation via contrastive learning

Learning Decoupled Retrieval Representation for Nearest Neighbour Neural Machine Translation. Wang et al. COLING’2022.



What Knowledge Does the Neural Model Need?
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• The importance of retrieved knowledge is related with 
the capability of the NMT, e.g. prediction confidence 
(Jiang et al., 2022).  
• dynamically decide whether retrieved knowledge is needed

Towards Robust k-Nearest-Neighbor Machine Translation. Jiang et al. EMNLP’2022.



What Knowledge Does the Neural Model Need?

68

• The relationship between NMT model and symbolic 
datastore is unclear.

• The datastore usually saves all target language token 
occurrences in the parallel corpus, which is large and 
possibly redundant.



Local Correctness
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• Intuitively, the pre-trained NMT model only needs 
knowledge that remedies its weakness. (Zhu et al., 
2022)

• A novel notion called “local correctness” (LAC), which 
consists of entry correctness and neighborhood 
correctness.

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Local Correctness
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• Entry Correctness
• Entry correctness describes whether the NMT model could 

make correct translation for a specific datastore entry.

• It can be evaluated by comparing target token and prediction 
token:

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Local Correctness
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• Neighborhood Correctness
• Neighborhood correctness evaluates the NMT model’s 

prediction on a neighborhood in the representation space.

• Knowledge margin is proposed as the metric.

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Local Correctness

72

• Understand the role of different datastore entries.
• Entries with small km: 
NMT model tends to fail when 
context are similar but different.

• Entries with large km:
NMT model generalizes well on 
these entries.

Helpful

Less
Helpful

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Empirical Results
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• Pruning with local correctness (PLAC) cuts off up to 45% 
datastore entries while achieving comparable performance.
• previous pruning method (40% -1.4 BLEU, 10% -0.9 BLEU)

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022



Interpretability
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• Why is retrieval is useful for neural model?
• memorize various patterns explicitly
• improve generalization ability of the MT system

• Which knowledge does the neural model need? 
• NMT model only needs knowledge that remedies its weakness
• local correctness is good angle to interpret this issue

Generalization through Memorization: Nearest Neighbor Language Models. Khandelwal et al. ICLR’2020 
Nearest Neighbor Machine Translation. Khandelwal et al. ICLR’2021
Learning Kernel-Smoothed Machine Translation with Retrieved Examples. Jiang et al. EMNLP’2021
Learning Decoupled Retrieval Representation for Nearest Neighbor Neural Machine Translation.  Wang et al. COLING’2022
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. Zhu et al. arXiv’2022
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Part 4: Applications



kNN for Other Tasks

76

• It is easy to fill other task-specific knowledge into the 
datastore

• The idea of kNN-LM/MT is applicable to other tasks
• Natural Language Inference (Rajani et al., 2020)
• Question Answering (Kassner and Schuetze, 2020)
• Visual Classification (Jia et al., 2021)
• Multi-Label Text Classification (Su et al., 2022)
• Named Entity Recognition (Wang et al., 2022)



🗃 kNN-box Toolkit
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• kNN-box is an open-source toolkit to build kNN-MT models

• Features
• 🎯 easy-to-use: a few lines of code to deploy a kNN-MT model
• 🔭 research-oriented: provide implementations of various papers
• 🏗 extensible: easy to develop new kNN-MT models with our toolkit
• 📊 visualized: the whole translation process of the kNN-MT can be visualized

https://github.com/NJUNLP/knn-box

https://github.com/NJUNLP/knn-box


🗃 kNN-box Toolkit

78

• We unify different kNN-MT variants into a single 
framework, albeit they manipulate datastore in 
different ways. 

save translation knowledge in key-values pairs

retrieve translation knowledge from the datastore

make final prediction based on retrieval results and             
NMT model

https://github.com/NJUNLP/knn-box

Datastore

Retriever

Combiner

https://github.com/NJUNLP/knn-box


Build kNN models like Playing LEGO

79

• Users can easily develop different kNN-MT models by 
customizing three modules

• We also provide example implementations of various 
popular kNN-MT models and push-button scripts to run 
them

https://github.com/NJUNLP/knn-box

https://github.com/NJUNLP/knn-box


kNN-box Provides an Interactive Interface

80

• User can type in the sentence and get translation 
generated by both NMT and KNN-MT system.

https://github.com/NJUNLP/knn-box

https://github.com/NJUNLP/knn-box


kNN-box Provides an Interactive Interface

81



Translation Visualization
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• Display each step’s translation candidates and kNN results



Datastore Visualization
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• Visualize datastore entries (of a single token)



Conclusion and Future work
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• Symbolic system is a good compensation for neural system.

• kNN-MT: a novel neuro-symbolic MT framework, which 
can also be transferred to other NLP tasks.

• recent advances has made kNN-MT 
• effective in more settings 
• has faster inference speed
• more explainable than a black box 



Conclusion and Future work
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• Interesting problems to be explored:
• Can we build a symbolic system that is tiny but effective? 
• Can we use neural vectors as values to construct the datastore?
• Can we explain the inner-working of the neural system with the 

help of the symbolic system?

neural key

symbolic key

symbolic value neural value

neural retrieval

exact matching

?

?
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