

# kNN-BOX: A Unified Framework for Nearest Neighbor Generation

Wenhao Zhu\*, Qianfeng Zhao\*, Yunzhe Lv\*, Shujian Huang, Siheng Zhao, Sizhe Liu, Jiajun Chen

**Nanjing University** 

\* Equal Contributions

### Background

- The k-nearest neighbor machine translation (kNN-MT) system incorporates a symbolic datastore to assist NMT model.
- The added symbolic datastore usually saves a huge amount of tokenlevel translation knowledge.

| Training Translation                                                                              | Datastore                                | i.                                                         |                                  |                                                                   |
|---------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|
| $(s^{(n)}, t^{(n)}_{i-1})$                                                                        | <br> <br>                                | <b>Representation</b><br>$k_j = f(s^{(n)}, t^{(n)}_{i-1})$ | Target $v_j = t_i^{(n)}$         |                                                                   |
| J'ai été à Paris.<br>J'avais été à la maison.<br>J'apprécie l'été.<br><br>J'ai ma propre chambre. | I have<br>I had<br>I enjoy<br><br>I have |                                                            | been<br>been<br>summer<br><br>my | generate the <u>value</u> token<br>at the hidden state <u>key</u> |
|                                                                                                   |                                          |                                                            |                                  | -                                                                 |

#### key-value datastore

Figure from: Khandelwal et al. Nearest Neighbor Machine Translation. ICLR'2021.

#### Background

 During inference, the NMT model will retrieve relevant knowledge from the datastore and use it to refine its original prediction.



Figure from: Khandelwal et al. Nearest Neighbor Machine Translation. ICLR'2021.

# Background

#### • Follow-up work

- Performance enhancement
  - Jiang et al. Learning Kernel-Smoothed Machine Translation with Retrieved Examples. EMNLP-2021.
  - Zheng et al. Adaptive Nearest Neighbor Machine Translation. ACL-2021.
  - Jiang et al. Towards Robust k-Nearest-Neighbor Machine Translation. EMNLP-2022.
- Efficiency optimization
  - Martins et al. Efficient Machine Translation Domain Adaptation. WSMNLP-2022.
  - Wang et al. Efficient Cluster-Based k-Nearest-Neighbor Machine Translation. ACL-2022.
  - Zhu et al. What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation. ACL-2023.

# **KNN-BOX Toolkit**

- Motivation
  - Existing methods are implemented with diverse codebases.
  - The community can still not well understand why this paradigm works.
  - We wonder whether this approach can be applied to other seq2seq generation tasks and bring broader impact.
- Contribution
  - Developing a unified nearest neighbor generation framework.
  - Providing a GUI to show the working flow of the neural-symbolic system.
  - Demonstrating the value of this paradigm on more generation tasks.

# **Design of KNN-BOX**

- We decompose the datastore-augmentation approach into three modules:
  - datastore: saving knowledge
  - retriever: retrieving nearest

neighbors from the datastore

combiner: interpolating the
 output distribution of the neural
 model and symbolic datastore



# **Reproducing Existing Work**

- KNN-BOX has released implementation of seven popular kNN-MT methods.
- Users can quickly reproduce existing work.

| Model                  | Deference               | Law    |       | Medical |       | IT     |       | Koran  |       |
|------------------------|-------------------------|--------|-------|---------|-------|--------|-------|--------|-------|
| Widdel                 | Kelelence               | Scale↓ | BLEU↑ | Scale↓  | BLEU↑ | Scale↓ | BLEU↑ | Scale↓ | BLEU↑ |
| Base Neural Model      | Ng et al., 2019         | -      | 45.5  | 100%    | 40.0  | -      | 38.4  | -      | 16.3  |
| Vanilla <i>k</i> NN-MT | Khandelwal et al., 2021 | 100%   | 61.3  | 100%    | 54.1  | 100%   | 45.6  | 100%   | 20.4  |
| Adaptive kNN-MT        | Zheng et al., 2021      | 100%   | 62.9  | 100%    | 56.1  | 100%   | 47.2  | 100%   | 20.3  |
| Smoothed kNN-MT        | Jiang et al., 2021      | 100%   | 63.3  | 100%    | 56.8  | 100%   | 47.7  | 100%   | 19.9  |
| Robust kNN-MT          | Jiang et al., 2022      | 100%   | 63.6  | 100%    | 57.1  | 100%   | 48.6  | 100%   | 20.5  |
| PCK kNN-MT             | Wang et al., 2022       | 90%    | 62.8  | 90%     | 56.4  | 90%    | 47.4  | 90%    | 19.4  |
| Efficient kNN-MT       | Martins et al., 2022    | 57%    | 59.9  | 58%     | 52.3  | 63%    | 44.9  | 66%    | 19.9  |
| PLAC kNN-MT            | Zhu et al., 2023a       | 55%    | 62.8  | 55%     | 56.2  | 60%    | 47.0  | 75%    | 19.9  |

### **Reliable Reproduction**

 We carefully compare the reproduced results with the results produced by their original implementation and find that two groups of results are well-aligned.

| Model                            | Law  | Medical | IT   | Koran |
|----------------------------------|------|---------|------|-------|
| Base NMT <sup>15</sup>           | 45.5 | 40.0    | 38.4 | 16.3  |
| $\hookrightarrow k$ NN-BOX       | 45.5 | 40.0    | 38.4 | 16.3  |
| Vanilla $k$ NN-MT <sup>16</sup>  | 61.3 | 54.1    | 45.6 | 20.4  |
| $\hookrightarrow k$ NN-BOX       | 61.3 | 54.1    | 45.6 | 20.4  |
| Adaptive $k$ NN-MT <sup>17</sup> | 62.9 | 56.6    | 47.6 | 20.6  |
| $\hookrightarrow k$ NN-BOX       | 62.9 | 56.1    | 47.2 | 20.3  |
| PCK $k$ NN-MT <sup>18</sup>      | 63.1 | 56.5    | 47.9 | 19.7  |
| $\hookrightarrow k$ NN-BOX       | 62.8 | 56.4    | 47.4 | 19.4  |
| Robust $k$ NN-MT <sup>19</sup>   | 63.8 | 57.0    | 48.7 | 20.8  |
| $\hookrightarrow k$ NN-BOX       | 63.6 | 57.1    | 48.6 | 20.5  |

# **Developing New Models**

 KNN-BOX enables users to easily build a fused model, e.g., combining the most explainable datastore (PLACDATSTORE) with the strongest combiner (ROBUSTCOMBINER).

| Datastore          | Retriever      | Combiner         | Scale↓ | BLEU↑ |
|--------------------|----------------|------------------|--------|-------|
| BASICDATASTORE     | BASICRETRIEVER | BASICCOMBINER    | 100%   | 61.3  |
| PCKDATASTORE       | BASICRETRIEVER | AdaptiveCombiner | 90%    | 62.8  |
| EFFICIENTDATASTORE | BASICRETRIEVER | AdaptiveCombiner | 57%    | 61.5  |
| EFFICIENTDATASTORE | BASICRETRIEVER | ROBUSTCOMBINER   | 57%    | 61.8  |
| PLACDATASTORE      | BASICRETRIEVER | AdaptiveCombiner | 55%    | 62.8  |
| PLACDATASTORE      | BASICRETRIEVER | ROBUSTCOMBINER   | 55%    | 63.7  |

# **Visualizing Generation Process**

 By running our provided script to launch a web page, users can interact with their kNN-MT system and see the visualized results.

#### **Generation Results**

Any ringleader who organizes a jailbreak and any active participant shall be sentenced to fixed-term imprisonment of not less than five years. </s>

Any ring@@ leader who organizes a j@@ ail@@ break and any active participant shall be sentenced to fixed @-@ term imprisonment of no

|   | Base candidates | Base probability | kNN candidates | kNN probability |
|---|-----------------|------------------|----------------|-----------------|
| 0 | of              | 0.272            | ring@@         | 0.775           |
| 1 | ring@@          | 0.255            | of             | 0.082           |
| 2 | one             | 0.078            | one            | 0.023           |
| 3 | organization    | 0.019            | organization   | 0.006           |
| 4 | member          | 0.017            | person         | 0.005           |
| 5 | person          | 0.014            | member         | 0.005           |
| 6 | chief           | 0.012            | chief          | 0.004           |
| 7 | first           | 0.010            | principal      | 0.003           |

## **Visualizing Generation Process**

• When selecting on a certain nearest neighbor point, users can see the corresponding value token, translation context and query-key distance.



distance: 615.779296875

# **More Application Scenarios**

- Multilingual machine translation
  - Applying kNN-BOX brings large performance improvement on all translation directions.

| Directions                          | Model             | Avg.        | Cs          | Da          | De          | Es          | Fr          | It          | NI          | Pl          | Pt          | Sv          |
|-------------------------------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $\mathbf{En}  ightarrow \mathbf{X}$ | M2M-100           | 29.1        | 20.7        | 36.2        | 26.7        | 35.1        | 33.7        | 29.8        | 27.7        | 15.6        | 31.9        | 33.7        |
|                                     | + <i>k</i> NN-BOX | <b>32.6</b> | <b>22.3</b> | <b>40.2</b> | <b>29.5</b> | <b>39.2</b> | <b>38.7</b> | <b>33.5</b> | <b>31.9</b> | <b>17.9</b> | <b>37.1</b> | <b>36.0</b> |
| $\mathbf{X}  ightarrow \mathbf{En}$ | M2M-100           | 33.4        | 27.5        | 40.0        | 31.8        | 36.6        | 35.1        | 33.4        | 31.9        | 21.1        | 38.9        | 37.3        |
|                                     | + <i>k</i> NN-BOX | 37.7        | <b>31.3</b> | <b>44.5</b> | <b>37.1</b> | <b>42.0</b> | <b>40.4</b> | <b>38.4</b> | <b>36.2</b> | <b>24.9</b> | <b>41.8</b> | <b>41.0</b> |

# **More Application Scenarios**

- Text simplification, paraphrase generation & question generation
  - Augmenting the base neural model with kNN-BOX brings performance enhancement in all three tasks.

| Task                  | Dataset                   | Metric       | Base Model   | kNN-BOX      |
|-----------------------|---------------------------|--------------|--------------|--------------|
| Text Simplification   | Wiki-Auto<br>Newsela-Auto | SARI<br>SARI | 38.6<br>35.8 | 39.4<br>38.2 |
| Paraphrase Generation | QQP                       | BLEU         | 28.4         | 29.5         |
| Question Generation   | Quasar-T                  | BLEU         | 9.6          | 15.7         |

### **Quick Impact**

- kNN-BOX has been used as the backbone of several works.
  - Liu et al. kNN-TL: k-Nearest-Neighbor Transfer Learning for Low-Resource Neural Machine Translation. ACL-2023.
  - Li et al. Revisiting Source Context in Nearest Neighbor Machine Translation. EMNLP-2023.
  - Zhang et al. Syntax-Aware Retrieval Augmented Code Generation. EMNLP-2023.
  - Zhang et al. NNOSE: Nearest Neighbor Occupational Skill Extraction. EACL-2024.

#### Conclusion

- We develop an open-sourced toolkit kNN-BOX for nearest neighbor generation.
  - quickly reproducing existing works
  - flexibly fusing advanced techniques
  - visually analyzing generation process



https://github.com/NJUNLP/knn-box