INK: Injecting kNN Knowledge in Nearest Neighbor Machine Translation

Wenhao Zhu¹, Jingjing Xu², Shujian Huang¹, Lingpeng Kong³, Jiajun Chen¹

National Key Laboratory for Novel Software Technology, Nanjing University

Shanghai AI Laboratory The University of Hong Kong

Neural Machine Translation

• The target of NMT is to learn a generalized representation space to adapt to diverse scenarios.

• However, neural networks often induce a non-smooth representation space, limiting its generalization ability.

Ideally, all of the representations in a neighborhood should share the same target token.

smooth space

Non-smooth Representation Space of NMT Model

- non-smooth representation space
 - Iow-frequency tokens disperse sparsely.
 - many "holes" could be formed, where the semantic meaning can be poorly defined.
- As a result, when NMT is used to translate examples from an unseen domain, the performance drops sharply.

Xnon-smooth space

Previous Solution: kNN-MT

kNN-MT (k-nearest neighbor machine translation)

- saving representations and target tokens into a datastore
- smoothing predictions with nearest neighbors

Drawbacks of kNN-MT

- step is time consuming
- easily updated

Retrieving neighbors from a large datastore at each decoding

Once the datastore is constructed, representations can not be

To overcome these drawbacks, we propose **INK** to <u>INject kNN Knowledge</u> into NMT.

Smoothing Representation Space with INK

- overview of INK training loop
 - representation refinement extracting kNN knowledge to adjust representation
 - asynchronous refresh

Asynchronous Refresh

using updated representation to refresh the datastore

Representation Refinement

Smoothing Representation Space with INK

 We adjust the representation by aligning three kinds of representations with KL-divergence.

Smoothing Representation with INK

(1) Aligning contextualized representations and token embeddings.

- (2) Aligning contextualized representations and kNN token embeddings.
- (3) Aligning contextualized representations of the same target token.

Smoothing Representation with INK

overall training procedure

$$\mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{(X,Y)\in\mathcal{B}} \sum_{t} (\mathcal{L}_t^a + \alpha \mathcal{L}_t^i + \beta \mathcal{L}_t^r)$$

refreshing datastore asynchronously

model and tuned adaptation parameters.

• optimizing adapter with the combined learning objective

During inference, we only need to load the off-the-shelf NMT

• INK system achieves the best performance by smoothing the representation space.

Systems	Mem.	Med COMET	l ical BLEU	La COMET	w BLEU	ľ COMET	T BLEU	Ko COMET	ran BLEU	Av COMET	vg. ' BLEU
Off-the-shelf NMT	-	46.87	40.00	57.52	45.47	39.22	38.39	-1.32	16.26	35.57	35.03
kNN-KD	-	56.20	56.37	68.60	60.65	-1.57	1.48	-13.05	19.60	27.55	34.53
NMT + Datastore Augmentation											
V-kNN	×1.7	53.46	54.27	66.03	61.34	51.72	45.56	0.73	20.61	42.98	45.45
A-kNN	×1.7	57.45	56.21	69.59	63.13	56.89	47.37	4.68	20.44	47.15	46.79
\mathbf{R} - $k\mathbf{NN}^{\dagger}$	×1.7	58.05	54.16	69.10	60.90	54.60	45.61	3.99	20.04	46.44	45.18
R-kNN	×43.8	57.70	57.12	70.10	63.74	57.65	48.50	5.28	20.81	47.68	47.54
NMT + Representation Refinement											
Adapter	×1.0	60.14	56.88	70.87	60.64	66.86	48.21	4.23	21.68	50.53	46.85
INK (ours)	×1.0	61.64*	57.75 *	71.13	61.90*	68.45 *	49.12 *	8.84 *	23.06*	52.52	47.85

Main Results

Main Results (Cont.)

Representation refinement according to kNN knowledge brings larger performance improvement.

Systems	Mem.	Medical		Law		IT		Koran		Avg.	
		COMET	BLEU	COMET	BLEU	COMET	BLEU	COMET	BLEU	COMET	BLEU
Off-the-shelf NMT	-	46.87	40.00	57.52	45.47	39.22	38.39	-1.32	16.26	35.57	35.03
kNN-KD	-	56.20	56.37	68.60	60.65	-1.57	1.48	-13.05	19.60	27.55	34.53
NMT + Datastore Augmentation											
V-kNN	×1.7	53.46	54.27	66.03	61.34	51.72	45.56	0.73	20.61	42.98	45.45
A-kNN	×1.7	57.45	56.21	69.59	63.13	56.89	47.37	4.68	20.44	47.15	46.79
$R-kNN^{\dagger}$	×1.7	58.05	54.16	69.10	60.90	54.60	45.61	3.99	20.04	46.44	45.18
R-kNN	×43.8	57.70	57.12	70.10	63.74	57.65	48.50	5.28	20.81	47.68	47.54
NMT + Representation Refinement											
Adapter	×1.0	60.14	56.88	70.87	60.64	66.86	48.21	4.23	21.68	50.53	46.85
INK (ours)	×1.0	61.64*	57.75 *	71.13	61.90*	68.45 *	49.12 *	8.84 *	23.06*	52.52	47.85

Main Results (Cont.)

Representation refinement according to kNN knowledge brings larger performance improvement.

Jointly applying adapter and datastore can further smooth predictions.

Conclusion

- INK iteratively refines the replaced according to kNN knowledge.
- INK system achieves an average gain of 1.99 COMET and 1.0 BLEU.
- Compared with kNN-MT baselines, our INK achieves better translation performance with 0.02× memory space and 1.9× inference speed up.

INK iteratively refines the representation space of the NMT model

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation

Wenhao Zhu^{1,2}, Shujian Huang^{1,2}, Yunzhe Lv^{1,2}, Xin Zheng^{1,2}, Jiajun Chen^{1,2}

National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization

Motivation

 kNN-MT incorporates the symbolic datstore to assist the neural model, which usually saves all target language token occurences in the parallel corpus.

The constructed datastore is usually large and possibly redundant.

trans	slation context $(X, Y_{< t})$	hidden state $h(X, Y_{< t})$	target token \mathcal{Y}_t		
Wie wirkt Penizillin?	<bos></bos>		How		
Wie wirkt Penizillin?	<bos> How</bos>		Does		
Wie wirkt Penizillin?	<bos> How does</bos>		Penicillin		
Wie wirkt Penizillin?	<bos> How does Penicillin</bos>		work		
Wie wirkt Penizillin?	<bos> How does Penicillin work</bos>		?		
Wie wirkt Penizillin?	<bos> How does Penicillin work ?</bos>		<e05></e05>		

stored knowledge: generate the <u>value</u> token at the hidden state <u>key</u>

key-value datastore

What Knowledge Does the Neural Model Need?

- The relationship between NMT model and symbolic datastore is unclear.
- Intuitively, the pre-trained NMT model only needs knowledge that remedies its weakness.
- We propose to explore this issue from the point of "local correctness" Itranslation correctness for a single entry (entry correctness) Translation correctness for a given neighborhood (neighborhood)
- correctness).

Local Correctness

• entry correctness

- Entry correctness describes whether the NMT model could make correct translation for a specific entry.
- It can be evaluated by comparing target token and prediction token:

translation context $(X, Y_{< t})$								
Wie wirkt Penizillin ?	<bos></bos>							
Wie wirkt Penizillin ?	<bos> How</bos>							
Wie wirkt Penizillin ?	<bos> How does</bos>							
Wie wirkt Penizillin ?	<bos> How does Penicillin</bos>							
Wie wirkt Penizillin ?	<bos> How does Penicillin wo</bos>							
Wie wirkt Penizillin ?	<bos> How does Penicillin wor</bos>							

Local Correctness

neighborhood correctness

- Neighborhood correctness evaluates the NMT model's prediction on a neighborhood in the representation space.
- Knowledge margin is proposed as the metric.

knowledge margin

$$km(h) = \arg \max_{t} \forall (h^{j}, y^{j}) \in \mathbb{R}$$
 $km(h) = 4$

Intuitively, km is the maximum size of the neighborhood of the entry h where the NMT could make correct translation

Local Correctness

understanding the role of different datastore entries

- are similar but different.
- entries.
- PLAC: Pruning with LocAl Correcness

Entries with small km: NMT model tends to fail when context helpful

Entries with large km: NMT model generalizes well on these

less helpful

Algorithm 1 Datastore Pruning by PLAC

Input: datastore \mathcal{D} , the *knowledge margin* threshold k_p , the pruning ratio r

Output: pruned datastore \mathcal{D}

- 1: candidates $\leftarrow \emptyset$
- 2: for each entry (h, y) in \mathcal{D} do
- if $km(h) \ge k_p$ then: 3:
- candidates \leftarrow candidates \cup (h, y)4:
- 5: end if
- 6: end for
- 7: repeat
- 8: randomly select entry (h, y) from candidates
- remove (h, y) from \mathcal{D} 9:
- 10: **until** pruning ratio r is satisfied
- 11: return \mathcal{D}

Experiment Results

 Pruning with local correctness (PLAC) cuts off 25%-45% datastore entries while achieve comparable performance

Previous pruning method (40% -1.4 BLEU, 10% -0.9 BLEU)

	OPUS-Medical Ratio BLEU↑ COMET↑		Ratio	OPUS-Law Ratio BLEU↑ COMET↑		Ratio	OPUS-IT Ratio BLEU↑ COMET↑			OPUS-Koran Ratio BLEU↑ COMET↑		
Base Finetune Adaptive <i>k</i> NN	- - 0%	39.73 58.09 57.98	0.4665 0.5725 0.5801	- - 0%	45.68 62.67 63.53	0.5761 0.6849 0.7033	- - 0%	37.94 49.08 48.39	0.3862 0.6343 0.5694	- - 0%	16.37 22.40 20.67	-0.0097 0.0551 0.0364
Random Cluster Merge Known All Known	45% 45% 45% 45% 73%	54.08* 53.31* 54.65* 56.44* 42.73*	0.5677 0.5689 0.5523* 0.5691 0.4926*	45% 45% 45% 66%	58.69* 58.68* 60.60* 61.61* 51.90*	0.6690* 0.6779* 0.6776* 0.6885* 0.6200*	40% 40% 40% 40% 69%	45.54* 45.80* 45.83* 45.93* 40.93*	0.5314* 0.5788 0.5334* 0.5563 0.4604*	25% 25% 25% 25% 56%	20.36 20.04* 20.25* 20.35* 17.76*	0.0434 0.0410 0.0365 0.0338 0.0008*
PLAC (ours)	45%	57.66	0.5773	45%	63.22	0.6953*	40%	48.22	0.5560	25%	20.96	0.0442

Conclusion

- We analyze the local correctness of the neural model's predictions to identify the conditions where the neural model may fail.
- We find that the NMT model often fails when the knowledge margin is small.
- We can safely prune the datastore with the proposed PLAC method, validating our findings about local correctness and translation failures.

Paper

