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Motivation

® KNN-MT incorporates the symbolic datstore to assist the
neural model, which usually saves all target language
token occurences in the parallel corpus.

® The constructed datastore is usually large and possibly

redundant.
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What Knowledge Does the Neural Model Need?

® The relationship between NMT model and symbolic datastore is
unclear.

® Intuitively, the pre-trained NMT model only needs knowledge
that remedies its weakness.

® We propose to explore this issue from the point of “local
correctness”

» translation correctness for a single entry (entry correctness)

» Translation correctness for a given neighborhood
(neighborhood correctness).
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Local Correctness

® Entry Correctness

» Entry correctness describes whether the NMT model
could make correct translation for a specific entry.

» It can be evaluated by comparing target token and
prediction token:
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Local Correctness

® Neighborhood Correctness

» Neighborhood correctness evaluates the NMT model’s
prediction on a neighborhood in the representation
space.

» Knowledge margin is proposed as the metric.

knowledge margin

km(h) = arg mtaXV(hj, ') € N;(h) is known

A Intuitively, km is the

A . A B known maximum size of the

neighborhood of the entry
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Local Correctness

® Knownledge margin value can reflect the capability of the

NMT model.
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Local Correctness

® Understand the role of different datastore entries.

» Entries with small km: NMT model tends to fail when

context are similar but different.

he

» Entries with large km: NMT model generalizes we

these entries.

® PLAC: Pruning with LocAl Correcness

Algorithm 1 Datastore Pruning by PLAC

Input: datastore D, the knowledge margin threshold k,, the
pruning ratio r
Output: pruned datastore D
1: candidates < () > step 1: collect
2: for eachentry (h,y)in D do

randomly select entry (h, y) from candidates
remove (h,y) from D

10: wuntil pruning ratio r is satisfied

11: return D

3: if km(h) > k, then:

4: candidates < candidates U (h,y)

5: end if

6: end for

7: repeat > step 2: drop
8:

9:
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Experiment Results

® Pruning with local correctness (PLAC) cuts off 25%-45%
datastore entries while achieve comparable performance

» Previous pruning method (40% -1.4 BLEU, 10% -0.9 BLEU)

OPUS-Medical OPUS-Law OPUS-IT OPUS-Koran
Ratio BLEUT COMET{ | Ratio BLEUt COMETT | Ratio BLEUT COMET{ | Ratio BLEUt COMET?H
Base 39.73 0.4665 45.68 0.5761 37.94 0.3862 16.37 -0.0097
Finetune - 58.09 0.5725 - 62.67 0.6849 - 49.08 0.6343 - 22.40 0.0551
Adaptive kNN 0% 57.98 0.5801 0% 63.53 0.7033 0% 48.39 0.5694 0% 20.67 0.0364
Random 45%  54.08* 0.5677* 45%  58.69* 0.6690* 40%  45.54* 0.5314* 25%  20.36 0.0434
Cluster 45%  53.31* 0.5689* 45%  58.68* 0.6779* 40%  45.80* 0.5788 25%  20.04* 0.0410*
Known 45%  56.44* 0.5691* 45%  61.61* 0.6885* 40%  45.93* 0.5563* 25%  20.35 0.0338
All Known 73%  42.73* 0.4926* 66%  51.90* 0.6200* 69%  40.93* 0.4604* 56% 17.76* 0.0008*
PLAC (ours) 45%  57.66 0.5773 45%  63.22 0.6953* 40%  48.22 0.5560 25%  20.96 0.0442
UM-Law UM-Thesis

Ratio BLEUt COMET/} | Ratio BLEUt COMET4

Base - 30.36 0.3857 - 13.13 -0.0442

Finetune - 58.55 0.6019 - 17.46 -0.0262

Adaptive kNN 0% 58.64 0.6017 0% 17.49 -0.0146

Random 30% 53.78* 0.5661* 15% 16.14* -0.0280*

Cluster 30% 49.65* 0.5274* 15% 15.73* -0.0419*

Known 30% 56.92* 0.5762* 15% 17.25 -0.0143

All Known 63% 46.45* 0.4720* 47%  15.33* -0.0525*

PLAC (ours) 30%  58.65 0.6056 15% 17.52 -0.0122

NMT: winner model of WMT19 De-En news translation task
Dataset: OPUS, UM
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Conclusion

® We analyze the local correctness of the neural model’s
predictions to identify the conditions where the neural
model may fail.

® \We find that the NMT model often fails when the
knowledge margin is small.

® We can safely prune the datastore with the proposed PLAC
method, validating our findings about local correctness
and translation failures.




