

What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation

Wenhao Zhu^{1,2}, Shujian Huang^{1,2}, Yunzhe Lv^{1,2}, Xin Zheng^{1,2}, Jiajun Chen^{1,2}

National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization

Motivation

- kNN-MT incorporates the symbolic datstore to assist the neural model, which usually saves all target language token occurences in the parallel corpus.
- The constructed datastore is usually large and possibly redundant.

trans	lation context	hidden state	target token
	$(X, Y_{< t})$	$h(X, Y_{< t})$	y_t
Wie wirkt Penizillin?	<bos></bos>		How
Wie wirkt Penizillin?	<bos> How</bos>		Does
Wie wirkt Penizillin?	<bos> How does</bos>		Penicillin
Wie wirkt Penizillin?	<bos> How does Penicillin</bos>		work
Wie wirkt Penizillin?	<bos> How does Penicillin work </bos>		?
Wie wirkt Penizillin?	<bos> How does Penicillin work ?</bos>		<e05></e05>

stored knowledge: generate the <u>value</u> token at the hidden state <u>key</u>

key-value datastore

What Knowledge Does the Neural Model Need?

- The relationship between NMT model and symbolic datastore is unclear.
- Intuitively, the pre-trained NMT model only needs knowledge that remedies its weakness.
- We propose to explore this issue from the point of "local correctness"
 - translation correctness for a single entry (entry correctness)
 - Translation correctness for a given neighborhood (neighborhood correctness).

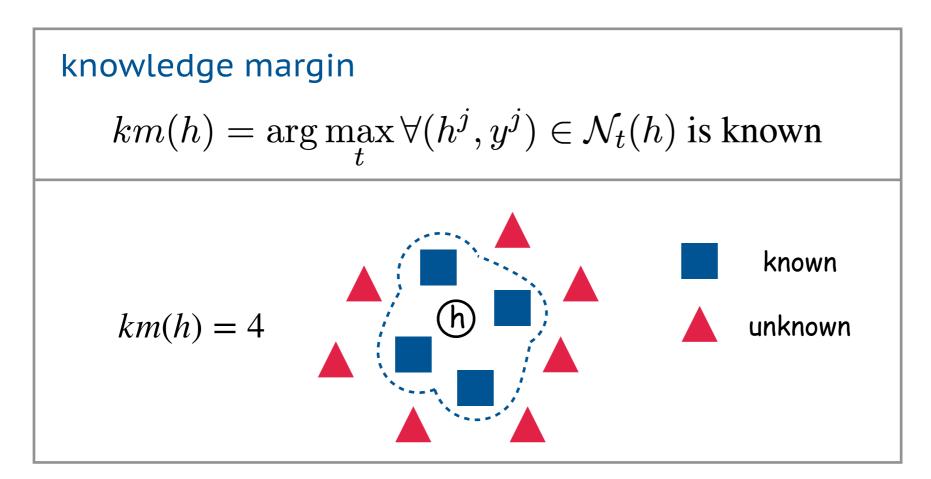
• Entry Correctness

- Entry correctness describes whether the NMT model could make correct translation for a specific entry.
- It can be evaluated by comparing target token and prediction token:

trans	slation context $(X, Y_{< t})$	hidden state $h(X, Y_{< t})$	target token y_t	predict token \hat{y}_t	
Wie wirkt Penizillin ?	<bos></bos>		How 🗲	- How	known
Wie wirkt Penizillin ?	<bos> How</bos>		Does 🔶	→ Does	known
Wie wirkt Penizillin?	<bos> How does</bos>		Penizillin 🗲	→ Cyanokit	unknown
Wie wirkt Penizillin?	<bos> How does Penicillin</bos>		work 🗲	→ works	unknown
Wie wirkt Penizillin ?	<bos> How does Penicillin work</bos>		? 🔶	→ ?	known
Wie wirkt Penizillin ?	<bos> How does Penicillin work ?</bos>		<eos> ┥</eos>	→ <eos></eos>	known

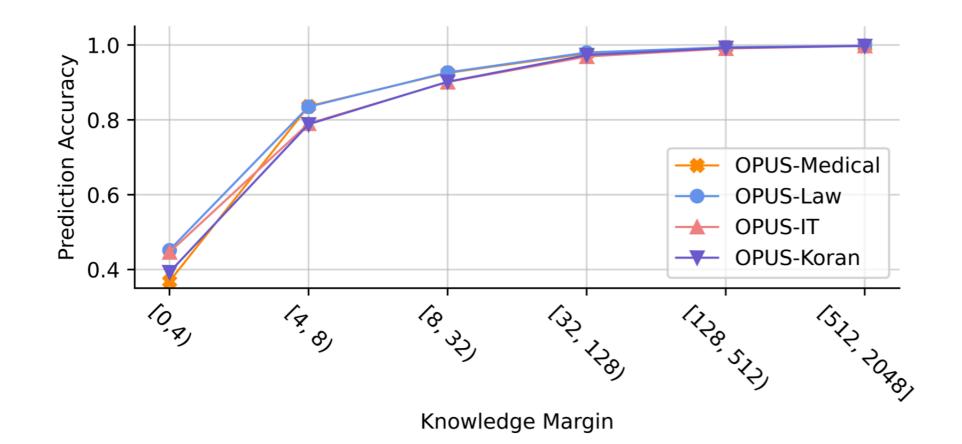
check

- Neighborhood Correctness
 - Neighborhood correctness evaluates the NMT model's prediction on a neighborhood in the representation space.
 - Knowledge margin is proposed as the metric.



Intuitively, km is the maximum size of the neighborhood of the entry h where the NMT could make correct translation

• Knownledge margin value can reflect the capability of the NMT model.



- Understand the role of different datastore entries.
 - Entries with small km: NMT model tends to fail when context are similar but different.
 - Entries with large km: NMT model generalizes well on these entries.
- PLAC: Pruning with LocAl Correcness

Algorithm 1 Datastore Pruning by PLAC **Input:** datastore \mathcal{D} , the *knowledge margin* threshold k_p , the pruning ratio r**Output:** pruned datastore \mathcal{D} 1: candidates $\leftarrow \emptyset$ \triangleright step 1: collect 2: for each entry (h, y) in \mathcal{D} do if $km(h) \ge k_p$ then: 3: candidates \leftarrow candidates \cup (h, y)4: 5: end if 6: end for 7: repeat \triangleright step 2: drop 8: randomly select entry (h, y) from candidates remove (h, y) from \mathcal{D} 9: 10: **until** pruning ratio r is satisfied 11: return \mathcal{D}

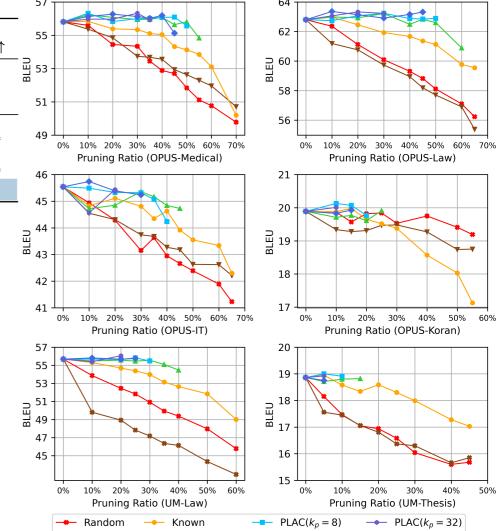
Experiment Results

- Pruning with local correctness (PLAC) cuts off 25%-45% datastore entries while achieve comparable performance
 - ▶ Previous pruning method (40% -1.4 BLEU, 10% -0.9 BLEU)

	OPUS-Medical		OPUS-Law		OPUS-IT			OPUS-Koran				
	Ratio	BLEU↑	COMET↑	Ratio	BLEU↑	COMET↑	Ratio	BLEU↑	COMET↑	Ratio	BLEU↑	COMET↑
Base	-	39.73	0.4665	-	45.68	0.5761	-	37.94	0.3862	-	16.37	-0.0097
Finetune	-	58.09	0.5725	-	62.67	0.6849	-	49.08	0.6343	-	22.40	0.0551
Adaptive <i>k</i> NN	0%	57.98	0.5801	0%	63.53	0.7033	0%	48.39	0.5694	0%	20.67	0.0364
Random	45%	54.08*	0.5677*	45%	58.69*	0.6690*	40%	45.54*	0.5314*	25%	20.36	0.0434
Cluster	45%	53.31*	0.5689*	45%	58.68*	0.6779*	40%	45.80*	0.5788	25%	20.04*	0.0410*
Known	45%	56.44*	0.5691*	45%	61.61*	0.6885*	40%	45.93*	0.5563*	25%	20.35	0.0338
All Known	73%	42.73*	0.4926*	66%	51.90*	0.6200*	69%	40.93*	0.4604^{*}	56%	17.76*	0.0008*
PLAC (ours)	45%	57.66	0.5773	45%	63.22	0.6953*	40%	48.22	0.5560	25%	20.96	0.0442

	UM-Law Ratio BLEU↑ COMET↑			UM-Thesis Ratio BLEU↑ COMET↑			
Base	-	30.36	0.3857	-	13.13	-0.0442	
Finetune	-	58.55	0.6019	-	17.46	-0.0262	
Adaptive <i>k</i> NN	0%	58.64	0.6017	0%	17.49	-0.0146	
Random	30%	53.78*	0.5661*	15%	16.14*	-0.0280*	
Cluster	30%	49.65*	0.5274*	15%	15.73*	-0.0419*	
Known	30%	56.92*	0.5762*	15%	17.25	-0.0143	
All Known	63%	46.45*	0.4720*	47%	15.33*	-0.0525*	
PLAC (ours)	30%	58.65	0.6056	15%	17.52	-0.0122	

NMT: winner model of WMT19 De-En news translation task Dataset: OPUS, UM



 \rightarrow PLAC($k_p = 16$)

Cluster

 \rightarrow PLAC($k_p = 4$)

Conclusion

• We analyze the local correctness of the neural model's predictions to identify the conditions where the neural model may fail.

• We find that the NMT model often fails when the knowledge margin is small.

• We can safely prune the datastore with the proposed PLAC method, validating our findings about local correctness and translation failures.