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• NMT have achieved promising results in recent years. 

• The target of NMT is to learn a generalized representation 
space to adapt to diverse scenarios. 

• However, neural networks often induce a non-smooth 
representation space, limiting its generalization ability.

Neural Machine Translation
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• non-smooth representation space 

‣ low-frequency tokens disperse sparsely. 

‣ many “holes” could be formed, where the semantic 
meaning can be poorly defined. 

• As a result, when NMT is used to translate examples from 
an unseen domain, the performance drops sharply.

Non-smooth Representation Space of NMT Model
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• kNN-MT (k-nearest neighbor machine translation) 

‣ saving representations and target tokens into a datastore 

‣ smoothing predictions with nearest neighbors

Previous Solution: kNN-MT
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• Retrieving neighbors from a large datastore at each 
decoding step is time consuming  

• Once the datastore is constructed, representations can not 
be easily updated

Drawbacks of kNN-MT
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To overcome these drawbacks, we propose 
INK to INject kNN Knowledge into NMT.



• Overview of INK training loop 

‣ representation refinement 

extracting kNN knowledge to adjust representation 

‣ asynchronous refresh 

using updated representation to refresh the datastore

Smoothing Representation Space with INK
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• We adjust the representation by aligning three kinds of 
representations with KL-divergence.

Smoothing Representation Space with INK
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• Aligning contextualized representations and token 
embeddings.

Smoothing Representation with INK

7



• Aligning contextualized representations and kNN token 
embeddings.

Smoothing Representation with INK
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• Aligning contextualized representations of the same 
target token.

Smoothing Representation with INK
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• Overall Training Procedure 

‣ optimizing adapter with the combined learning objective  

‣ refreshing datastore asynchronously 

‣ runing the loop until convergence 

• During inference, we only need to load the off-the-shelf 
NMT model and tuned adaptation parameters.

Smoothing Representation with INK
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• NMT Model 

‣ winner model of WMT’19 news translation task 

• Target Domains 

‣ Medical, Law, IT, Koran 

• Baselines 

‣ V-kNN, A-kNN, R-kNN: different implementation of kNN-MT 

‣ Adapter: adjusting representations without kNN knowledge 

‣ kNN-KD: using kNN knowledge to train a NMT from scratch. 

Experiment Setting

11



• We explore the following research questions: 

‣ RQ1: Can we smooth the representation space via small 
adapter and drop datastore aside during inference? 

‣ RQ2: How much improvement can be brought by using 
kNN knowledge to adjust the representation 
distribution? 

‣ RQ3: Will together using adapter and datastore bring 
further improvement?

Experiment Results
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• INK system achieves the best performance by smoothing 
the representation space.

Main Results
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• Representation refinement according to kNN knowledge 
brings larger performance improvement.

Main Results (Cont.)
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• Representation refinement according to kNN knowledge 
brings larger performance improvement.

Main Results (Cont.)
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• Jointly applying adapter and datastore can further smooth 
predictions.

Main Results (Cont.)
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• We propose a novel training framework INK, to iteratively 
refine the representation space of the NMT model 
according to kNN knowledge. 

‣ INK system achieves an average gain of 1.99 COMET and 
1.0 BLEU. 

‣ Compared with kNN-MT baselines, our INK achieves 
better translation performance with 0.02× memory space 
and 1.9× inference speed up.

Conclusion
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